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Foster’s Reactance Theorem

• The theorem is a consequence of 
conservation of energy.

• The slope of the input reactance 
(susceptance) of a lossless passive one-
port is always positive.

• All zeros and poles of the impedance 
(admittance) function are simple, and a 
zero must lie between any two poles, and 
a pole between any two zeros.
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Consequences of Foster’s 
Reactance Theorem

• Impedances (admittances) of passive one-
port networks rotate clockwise on the 
Smith Chart as frequency increases.

• There is no such thing as a negative 
capacitor or a negative inductor (for 
passive circuits).
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Non-Foster Network
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VHF Whip: A Canonical ESA

•Geometry of monopole 
antenna as modeled in 
Antenna Model software.  
The monopole is a copper 
cylinder 0.6 meters in 
length and 0.010 meters in 
diameter, mounted on an 
infinite perfect ground 
plane.
•Frequency range is 30 to 
90 MHz.
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Input Impedance of VHF Whip From Simulation
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Two Tools to Help With Analysis

• Exact two-port representation of antenna 
in frequency domain in terms of s-
parameters.

• Approximate lumped equivalent circuit 
model of antenna over frequency range of 
interest.
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The quantities in this box are re-evaluated 
at every frequency for which we have data.
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Two-Port Representation of Antenna
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Two-Port Representation of Antenna

• Antenna impedance and radiation efficiency are 
used to produce a Touchstone *.s2p file for use 
in circuit simulation – the exact two-port 
representation of the antenna at each frequency 
for which we have data.

• Allows concepts like transducer power gain and 
stability measures to be applied to antennas.  
The latter being particularly important for 
considering the use of non-Foster reactances in 
antenna matching networks.
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Approximate Equivalent Circuit of the Antenna

• To model the antenna, we assume that the real 
part of the antenna impedance varies as the 
square of frequency, and the imaginary part 
behaves as a series LC.
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Approximate Equivalent Circuit of the Antenna

• Evaluation of the model parameters (R0, La and 
Ca):
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Approximate Equivalent Circuit of the Antenna
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Points to Consider

• A real passive matching network can only 
approach and never exceed the performance 
predicted by the Bode-Fano criterion.

• The matchable bandwidth is limited by the Q of 
the load.

• The matchable bandwidth can only be increased 
by de-Qing the load – that is by intentional 
introduction of dissipative losses into the 
matching network – and concomitant reduction 
in radiation efficiency.
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Bode-Fano Criterion
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Single-Tuned Mid-band Match
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Wheeler-Lopez Double-Tuned Matching

A.R. Lopez, “Wheeler and Fano Impedance 
Matching”, IEEE Antennas and Propagation 
Magazine, Vol. 49, No. 4, August 2007
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Wheeler-Lopez Double-Tuned Matching with 
Antenna De-Qing
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Matching Network with Non-Foster Reactances
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Optimized Non-Foster Matching Network
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High-Impedance Ground Plane

Sievenpiper, et. al, IEEE Trans. MTT, Nov. 1999
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EM Properties of the Sievenpiper 
High-Impedance Ground Plane

• Surface impedance is (ideally) an open-circuit 
(emulating a PMC rather than a PEC like a 
conventional ground plane).

• Propagation of TM and TE surface waves is not 
supported (thus can be called an 
electromagnetic bandgap structure).
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Model for Surface Impedance of Sievenpiper HIS

Γ

For plane waves at normal incidence, the substrate may be understood as an electrically short length of 
shorted transmission line in parallel with a shunt capacitance at the reference plane of the outer surface. 
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Reflection Phase Bandwidth of 
Sievenpiper HIS
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Electrically-Thin Broadband High-
Impedance Surface

• In principle, one could realize an electrically-thin 
broadband HIS by using a high-permeability 
spacer layer.

• A high-permeability meta-material can be 
realized using artificial magnetic molecules 
(AMMs) implement with negative inductance 
circuits.

• Unfortunately, AMM performance is very 
sensitive to component tolerances.

• But, there is a better way …
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Electrically-Thin Broadband 
High-Impedance Surface

Kern, Werner, Wilhelm, APS 2003

34IEEE Waves and Devices 19 Feb 2010 
Copyright © 2010James T. Aberle



Electrically-Thin Conventional HIS
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Electrically-Thin HIS with Negative Inductance
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Unit Cell of Sievenpiper HIGP
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Reflection Phase Response of 
Sievenpiper HIGP
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Unit Cell of Sievenpiper HIGP with Reactive Loading
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Equivalent Circuit of Loaded HIGP for 
Normally Incident Plane Wave
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Reflection Phase of Capacitively 
Loaded HIGP
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Reflection Phase of Negative-Inductor 
Loaded HIGP
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What is an Artificial Material?
• An artificial material is a large-scale emulation of an actual 

material, obtained by embedding a large number of electrically 
small inclusions (“artificial molecules”) within a host medium.

• Like natural molecules, the electrically small inclusions exhibit 
electric and/or magnetic dipole moments.

• As a result of these dipole moments, the macroscopic 
electromagnetic constitutive parameters (εr and µr) are altered 
with respect to the host medium. 
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Why Create an Artificial 
Magnetic Material?

• “Naturally” occurring magnetic materials 
(ferrites) are heavy, fragile and expensive, and 
they also exhibit relatively high magnetic losses 
and dielectric constant.

• Available ferrite materials provide a limited 
selection of relative permeabilities.

• The permeability tensor of the ferrite is 
controlled by applying a static magnetic field –
permanent magnets and/or electromagnets are 
required.
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Artificial Magnetic Metamaterial

•A 3-dimensional lattice of artificial 
molecules. 
•Electrically small loop with a load 
impedance
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Simple Circuit Model for Artificial Magnetic Molecule (AMM)
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Broadband, High Permeability Requires Negative Inductance
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How to Extract Material Properties 
(TEM waveguide containing material sample)

wave port 1 wave port 2

material sample 

PMC walls
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How to Extract Material 
Properties

• HFSS
-Two port S parameters calculation of TEM 

waveguide containing material sample. 
• MATLAB 

-Shifting of the reference planes.
-Conversion of S-parameters to ABCD 

parameters.
-Calculation of propagation constant and 

characteristic impedance of equivalent 
transmission line.
-Evaluation of the material properties.
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How to Extract Material Properties 
(Loop Configuration)

lumped element

copper loop
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Negative Inductance is Modeled as a Frequency-Dependent 
Capacitance
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Cancellation of Parasitic 
Capacitance Using NIC

To remove the resonance, the parasitic capacitance of the loop should be 
compensated by a negative capacitance. 
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Remedy for Snoek-Like Phenomenon: Add Negative Capacitance in 
Shunt with Negative Inductance
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Negative Impedance Converter (NIC)

• An ideal NIC is a two-port network such that when a 
load impedance is attached to the output terminal, the 
input impedance is the (possibly scaled) negative 
value of the load impedance. 
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Canonical NIC
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NIC Return Loss BW vs. Op-Amp Unity Gain BW
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Fabricated OPA690 NIC Evaluation 
Board
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Schematic captured from Agilent ADS of the circuit 
for evaluating the performance of the OPA690 NIC
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Simulated and measured return loss for 
the OPA690 NIC evaluation circuit
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• Canonical NIC and most other NIC circuits in the literature produce 
grounded negative impedance

• But for the applications we are considering here, we need floating
negative impedance

Ground Negative Impedance Versus 
Floating Negative Impedance

-Z

-Z
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Floating NIC Realized Using Two Op-Amps
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Op Amp BW 15 dB RL NIC BW

500 MHz 3.6 MHz

1000 MHz 7.2 MHz

2000 MHz 14.5 MHz

NIC Return Loss BW vs. Op-Amp Unity Gain BW
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NIC “All-Pass” Test Circuit
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High-Frequency BJT Device Model
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Test Circuit Results (fT = 32 GHz)
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All-Pass -20 dB RL BW v. fT
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Fabricated Two Transistor Floating 
NIC Using 2N2222 Devices
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Measured Results for Two Transistor FNIC
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Summary of NIC Developments

• We’ve had some successes in fabricating NICs 
that work up to about 50 MHz.

• We have had many more failures.

• The main issue concerns stability – small and 
large signal stability.

• We are making progress, albeit very slowly …

• Someday, someone will make a reliable FNIC 
that works into the 100s of MHz range.
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How Best to Use a NIC to Make 
a Non-Foster Reactance?

• Direct negation:

ZZ− NIC
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How Best to Use a NIC to Make 
a Non-Foster Reactance?

• Using a certain transformation:

Verman, Proc. IRE, Apr. 1931
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Negative Impedance Transformation

• Can develop an NIC that 
needs to work for only one 
value of real impedance
• Also suggests the possibility 
of using negative resistance 
diodes (Tunnel, Gunn, etc.) for 
NIC realization

Grounded

Floating
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Schematic captured from Agilent ADS of 
VHF monopole with active matching network
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Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster 

Reactances
– Electrically Small Antennas
– High-Impedance Surfaces

– Artificial High-Permeability Materials

• Realization of Non-Foster Reactances
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Summary
• The use of non-Foster reactances could improve 

the performance of ESAs and HIGPs 
dramatically.

• Some hard-won successes have been achieved 
in the development of the requisite NICs.

• But an interdisciplinary team with expertise in 
circuits as well as field theory and sufficient 
funding is needed to realize reliable high 
frequency non-Foster reactances and to 
integrate them into electromagnetic devices.
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