Digital Pre-Distortion Techniques for RF Power Amplifiers

John Wood

27 January, 2010
It doesn’t matter what the raw linearity of the PA looks like, the DPD will take care of it!
Outline

• Modern Communication’s Signals and RFPAs
 ▪ Signals, Linearity, and Efficiency

• Some Linearizer Basics
 ▪ What’s nonlinearity?
 ▪ What are memory effects?
 ▪ What does a linearizer do?

• Digital Pre-Distortion DPD
 ▪ System Architecture
 ▪ Linearization Results
Linearity Requirements

- Wireless Communications Standards place stringent requirements on linearity performance of PAs

- ACLR1 – Adjacent Channel Power Ratio
- ACLR2 – Alternate Channel Power Ratio
- Spectral Emission Mask – an absolute power limit
Crest Factor and Peak-to-Average Power Ratio

- **Crest Factor**

\[CF = \frac{\text{Peak Magnitude}}{\text{Sqrt(Average Power)}} \]

- **Peak-to-Average Ratio**

\[\text{PAR} = \text{CF}^2 = \frac{\text{Peak Power}}{\text{Average Power}} \]

- **PAR** usually expressed in dB as

\[10\times\log_{10}(\text{PAR}) \]
Amplifier PAR Effects

- Peaks will be clipped even with ideal amplifier if input exceeds $P_{\text{in, max}}$
- With enough clipping it appears as Gaussian noise to the receiver
- Effects of clipping:
 - In-band distortion
 - Degradation of BER
 - Higher EVM
 - Out of Band Radiation
 - ACI problems
 - ACLR degradation
Measuring PAR

- Finding absolute max of a data signal is difficult!!
- PAR easier to determine if statistically defined.

I and Q parts of signal are Gaussian

Magnitude considered Rayleigh

- Create a probability density function of signal with histogram
Cumulative Complementary Distribution Function

CCDF

- This is a statistical measure for digital signals
CCDF – Statistical Measure of PAR

From histogram of data CCDF can be derived

CCDF shows the probability that a signal will exceed the peak power

0.01% PAR value means that the 99.99% of the signal has a magnitude lower than this PAR value (9dB in this case)
What does this mean for the PA?

- We want to operate the PA at highest efficiency
- This point is at peak output power
- We need to ensure the signal peak is no higher than P-1dB
- For high PAR signals the average efficiency is extremely low

Cripps, RFPA, Ch. 8, p. 225, Figure 8.3
High-Efficiency PA Modes

• Circuit architectures to maximize efficiency
• Harmonically-loaded PAs
 ▪ Class E, F,…
• Load modulation
 ▪ Doherty, LINC
• Bias modulation
 ▪ Drain modulation, Envelope Tracking (ET), EER
• Switching PAs
 ▪ Class D, S,…
• High efficiency generally means very nonlinear
 ⇒ Need for Linearization
Linearity and Efficiency

• A Design Compromise
 • Highest efficiency is the most nonlinear regime of operation

• Figure of Merit
 • Highest efficiency at specified OBO, while still meeting ACLR, spectral mask specifications

Linearizer or Pre-Distorter is essential
Outline

• Modern Communication Signals and RFPAs
 ▪ Signals, Linearity, and Efficiency

• Some Linearizer Basics
 ▪ What’s nonlinearity?
 ▪ What are memory effects?
 ▪ What does a linearizer do?

• Digital Pre-Distortion DPD
 ▪ System Architecture
 ▪ Linearization Results
Nonlinearity in a PA

\[y(t) = f(u(t)) = a_1 u(t) + a_2 u^2(t) + \ldots + a_N u^N(t) = \sum_{n=1}^{N} a_n u^n(t) \]

Apply a single-tone CW RF Signal

\[u(t) = A_1 \cos(\omega_0 t + \phi) \]

yields

\[y(t) = a_1 A_1 \cos(\omega_0 t + \phi) + a_2 A_1^2 \cos^2(\omega_0 t + \phi) + \ldots + a_n A_1^2 \cos^2(\omega_0 t + \phi) \]
Trigonometric expansion...

Writing out the response $y(t)$

\[
y(t) = a_1 A_1 \cos(\omega_0 t + \phi_1) \quad \text{Linear gain} \quad + a_3 \frac{3 A_1^3}{4} \cos(\omega_0 t + \phi_1) \quad \text{AM-AM & AM-PM}
\]

\[
+ a_2 \frac{A_1^2}{2} \quad \text{DC Offset, or self-bias}
\]

\[
- a_2 \frac{A_1^2}{2} \cos(2\omega_0 t + 2\phi_1) \quad \text{2nd Harmonic distortion}
\]

\[
+ a_3 \frac{A_1^3}{4} \cos(3\omega_0 t + 3\phi_1) \quad \text{3rd Harmonic distortion}
\]

… etc.
Measures of Distortion

• Harmonic Distortion
 - Clearly the nonlinear polynomial function will give rise to *harmonics* of a single-tone input

• AM-to-AM Conversion
 - Nonlinear changes in the output signal amplitude in response to input amplitude changes

• AM-to-PM Conversion
 - Nonlinear changes in the output signal phase in response to input amplitude changes
Envelope Distortion

- Envelope distortion can be estimated from a Two-Tone Power Series Analysis
- The input signal is
 \[u_i(t) = u \cos(\omega_1 t) + u \cos(\omega_2 t) \]
 and
 \[\Delta \omega = |\omega_1 - \omega_2| \ll \omega_1, \omega_2 \]
- The 2-tone signal covers the complete dynamic range of the amplifier
 - The Peak-to-Average Power Ratio is 3 dB
- The amplifier output is a power series expansion
 \[y = a_1 u_i + a_2 u_i^2 + a_3 u_i^3 + a_4 u_i^4 + a_5 u_i^5 + \ldots \]
Two-tone output voltage

Degree and Order

- Each line is a ‘degree’
 - power of \(v(t) \) in the polynomial expansion

- The ‘order’ of the mixing frequency is the number of components
 - 3\(^{rd}\)-order products are
 - \(3\omega_1, 3\omega_2 \)
 - \(2\omega_1\pm\omega_2, 2\omega_2\pm\omega_1 \)

\[
y(t) = a_1 u \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right] \\
+ a_2 u^2 \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right]^2 \\
+ a_3 u^3 \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right]^3 \\
+ a_4 u^4 \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right]^4 \\
+ a_5 u^5 \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right]^5 \\
\ldots
\]
Two-tone Intermodulation Products

- Odd-order mixing products are in the signal bandwidth
 - Close to carrier Intermodulation (IM) products

\[\begin{align*}
3\omega_1 - 2\omega_2 \\
2\omega_1 - \omega_2 \\
\omega_1 \\
2\omega_2 - \omega_1 \\
3\omega_2 - 2\omega_1
\end{align*} \]
Additional Distortion Measures

- In addition to
 - Harmonic Distortion
 - AM/AM and AM/PM conversion

- Intermodulation Distortion
 - Nonlinear mixing between the various frequency components of the signal, ω_1 and ω_2, leading to new frequency components in the signal

- Cross Modulation Distortion
 - Nonlinear mixing between the various frequency components of the signal, ω_1 and ω_2, resulting in products at existing frequency components of the signal
Error Vector Measure

Assume a simple cubic model: \[v_o = a_1 v_i + a_3 v_i^3 \]

Even though the AM-AM compression is the same, \(a_3 \) is different

S. C. Cripps, Advanced Techniques in RFPA Design, Figs 3.4 & 3.5
Modulated AM-AM & AM-PM

Gain and Phase Deviation dependences on input power, as a function of time captured using a modulated signal, showing the variations in instantaneous values. DUT is a 400 W Doherty amplifier; red = measured, blue = modeled
Memory Effects

- The output at time t_n is dependent not only on the input at time t_n, but also on the input at previous times.
- The number of time samples that need to be considered is the memory depth, M.
- Practical systems have a finite memory depth: fading memory.
Sources of memory in RF PA

Short Term Memory

- Input Matching Network
- Output Matching Network
- C_g, C_d, τ

Long Term Memory

- Thermal, Traps
- Gate Bias
- Drain Bias

RF Source

Vg

Vd

Sources of memory in RF PA

Short Term Memory

- Input Matching Network
- Output Matching Network
- C_g, C_d, τ

Long Term Memory

- Thermal, Traps
- Gate Bias
- Drain Bias

RF Source

Vg

Vd
Short Term Memory Effects

• These are memory effects that occur on the timescale of the signal
 ▪ For RF PAs this can mean at the carrier timescale or the envelope timescale

• RF frequency response
 ▪ Band-pass or low-pass nature of the matching networks

• AM-PM
 ▪ Phase changes resulting from large-signal drive

• Transistor
 ▪ Device capacitances
 ▪ Transit times

\[\{ \text{or more strictly, } \frac{\partial Q(V(t))}{\partial t} \text{ effects} \} \]
Long Term Memory Effects

• Take place on a timescale that is much longer than the signal timescale
• Thermal
 ▪ Thermal time constants in semiconductor devices can range from 10s to 100s of microseconds, to ~ 1 second
• Trapping Mechanisms
 ▪ Time constants from microseconds to seconds
 ▪ More prevalent in III-V semiconductors (HCl in MOS?)
• Bias Circuits
 ▪ RF filters, capacitors, and chokes on bias lines introduce storage times
 ▪ Relationship to VBW
Nonlinear Memory Mechanisms

- Long Term Memory
 - Filters out DC and IM2

- IM2 and IM3
- Input Matching Network
- Output Matching Network
- RF Source
- Gate Bias
- Drain Bias
- f_1f_2
A Simple Pre-distorter

- Let the amplifier Gain be described by a polynomial
 \[v_o(t) = a_1 v_i + a_2 v_i^2 + a_3 v_i^3 + \ldots = F_{NL} (v_i(t)) \]
- Linear gain requires
 \[v_{oL}(t) = a_1 v_i(t) \]
- If we can find another function, \(G \), and pass the signal through first so that:
 \[v_o(t) = F(G(v_i(t))) = a_1 v_i(t) \]
- We get Linear Gain
- We do not get more power
- We get sharper saturation
The Pre-distorter Function

The secret is finding the pre-distorter function G

- The pre-distorter function is an inverse of the nonlinear contributions from the amplifier

Note increased input signal bandwidth
The Pre-Distorter…

• …increases the peak-to-average power ratio of the signal that is input to the PA
 ▪ Gain expansion characteristic of the PD

• …increases the bandwidth of the signal that is input to the PA
 ▪ Distortion components are added to the signal to cancel out the distortion of the PA
Outline

• Modern Communication's Signals and RFPAs
 ▪ Signals, Linearity, and Efficiency

• Some Linearizer Basics
 ▪ What’s nonlinearity?
 ▪ What are memory effects?
 ▪ What does a linearizer do?

• Digital Pre-Distortion DPD
 ▪ System Architecture
 ▪ Linearization Results
Digital Pre-distortion in BTS Transmitter

- Signal is sampled at PA output
- Down-converted to IF or zero-IF
- Digitization using fast ADC
- ‘Predistorter’ converts to I & Q, compares with input I & Q signals, and generates output signal which is converted to analog signal, and up-converted to RF
- Signal pre-conditioning in the digital domain
Typical Digital Pre-Distortion System

- Baseband I & Q signals are combined – can be several carriers
- Crest Factor Reduction to limit Peak-to-Average Power Ratio
- Pre-distortion Function
- DSP also accomplishes time alignment, update of DPD parameters
- Fast ADC/DAC, high dynamic range (16 bit, >200 MSPS typical)
- RF up/down-conversion
Digital Up-Converter

• The purpose of the DUC is to take the sampled data signals and up-convert to the sample rate of the digital signal processing system

• In the digital domain, the up-conversion is performed by re-sampling or interpolation:
 ▪ The digital signal is padded with zeros to reach the correct sample rate
 ▪ The signal is then interpolated between the zeros
 ▪ A digital filter is applied to retrieve the correct frequency and phase response

• Example:
 ▪ WCDMA native sampling rate is 3.84 Msps
 ▪ If the digital IF (DSP clock rate) is 61.44 MHz
 ▪ WCDMA signal needs to be oversampled by 16X
Crest Factor Reduction

Essential for DPD Applications

- The gain expansion characteristic of the pre-distorter means that the signal input to the PA is of high peak-to-average power ratio.
- CFR can reduce this PAPR to manageable levels, and can avoid the PA operating in saturation.
CFR Principle

- The signal peaks above a threshold level are detected
- The magnitude of the peak is reduced to below some target value
- Filtering is required to re-shape the signal spectrum
Resampling prior to DPD

- The bandwidth of the signal after DPD (b) is much wider than the original input signal (a).
- To reconstruct this DPD signal in the analog domain, it must be sampled at a higher rate than the input.
- Under-sampling will lead to aliasing (c).
- This cannot be removed by over-sampling at the output of the DPD.
- Over-sample at DPD input.

Figure from Zhu et al, IEEE Trans MTT 56(7) pp1524-34 (2008)
DPD Linearizer Action

Pre-distorter (PD)
- takes the input signal
- Compares with feedback signal sampled at output of PA
- Adjusts the PD function to minimize the difference
 - Gain, phase parameters of AM-AM and AM-PM
 - Coefficients in polynomial series function
- Memory effects require comparison over several time samples
Memory Polynomial Pre-Distorter

Regular polynomial, with added dimensions for delays

\[
V_a[n] = \sum_{q=0}^{Q} \sum_{p=1}^{P} \alpha_{qp} V_{in}[n-q]|V_{in}[n-q]|^{p-1}
\]
Linearizer Myths & Misunderstandings

Linearizers

- **do not** increase the output power available
- **do not** increase gain
- **do not** improve the noise floor
- have a harder saturation characteristic
 - In saturation this can create more distortion & noise
- work best at low signal levels
- do not necessarily accommodate memory effects
- have a finite linearizing bandwidth
- consume additional power, reducing system efficiency
Two Carrier GSM Performance

Before DPD

- Standard: NONE
- Tx Channels:
 - Ch1 (Ref) 43.49 dBm
 - Ch2 43.48 dBm
 - Total 46.50 dBm
- Adjacent Channel
 - Lower -40.71 dB
 - Upper -41.46 dB
- Alternate Channel
 - Lower -60.28 dB
 - Upper -71.00 dB
- 2nd Alternate Channel
 - Lower -63.49 dB
 - Upper -65.39 dB
- SWP 20 of 20

After DPD

- Standard: NONE
- Tx Channels:
 - Ch1 (Ref) 43.91 dBm
 - Ch2 43.96 dBm
 - Total 46.95 dBm
- Adjacent Channel
 - Lower -70.11 dB
 - Upper -70.65 dB
- Alternate Channel
 - Lower -73.40 dB
 - Upper -74.78 dB
- 2nd Alternate Channel
 - Lower -74.55 dB
 - Upper -77.04 dB

- DPD Results are achieved using TI GC5322 Evaluation Module
- Intermodulation products are below -70dBc up to 46.9dBm of output power
- 42% final stage efficiency and 36% two-stage power added efficiency
240 W Doherty PA
2C-GSM Signal at 1800 MHz

RF PA before DPD

Center 1.84244 GHz
Span 15.2 MHz

Standard: NONE

<table>
<thead>
<tr>
<th>Adjacent</th>
<th>Lower dB</th>
<th>Upper dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent</td>
<td>-29.36</td>
<td>-28.28</td>
</tr>
<tr>
<td>Alternate</td>
<td>-46.96</td>
<td>-47.17</td>
</tr>
<tr>
<td>2nd Alt</td>
<td>-50.44</td>
<td>-50.44</td>
</tr>
<tr>
<td>3rd Alt</td>
<td>-56.71</td>
<td>-56.32</td>
</tr>
<tr>
<td>4th Alt</td>
<td>-61.18</td>
<td>-61.21</td>
</tr>
<tr>
<td>5th Alt</td>
<td>-70.41</td>
<td>-70.86</td>
</tr>
<tr>
<td>6th Alt</td>
<td>-80.71</td>
<td>-81.52</td>
</tr>
<tr>
<td>7th Alt</td>
<td>-81.29</td>
<td>-81.75</td>
</tr>
<tr>
<td>8th Alt</td>
<td>-80.84</td>
<td>-82.88</td>
</tr>
<tr>
<td>9th Alt</td>
<td>-81.16</td>
<td>-82.56</td>
</tr>
<tr>
<td>10th Alt</td>
<td>-82.31</td>
<td>-83.09</td>
</tr>
<tr>
<td>11th Alt</td>
<td>-83.39</td>
<td>-83.75</td>
</tr>
</tbody>
</table>
RF PA after DPD

240 W Doherty PA
2C-GSM Signal at 1800 MHz

Class 1 linearization at $P_{out} = 47$ dBm average
RF PA before DPD

~500 W Doherty PA
4C-GSM Signal at 940 MHz

\[P_{out} = 100 \text{ W average} \]
RF PA after DPD

~500 W Doherty PA
4C-GSM Signal at 940 MHz

Class 2 linearization at $P_{out} = 50$ dBm average
DPD of 500 W Doherty PA under Drive-up

940 MHz, 4C-GSM

Class 2 spec.
Backup
GSM/EDGE has stringent requirements