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Overview

= SiGe Production History

" Comparison of SiGe BIiCMOS to other competing
technologies

= Summary of key mm-Wave components

= Circuit Examples




Historical View of SiGe BiCMOS RF Applications
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= mm-Wave applications are expected to make up a good
portion of the market for SiGe BiCMOS technologies over
the next decade




Historical Volume of Wafer Production

1000s of Wafers
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= Last 6 years of production
history for the SBC18 family of
processes

= Roughly 20K Wfr/Yr Run Rate

= Almost none of this is mm-
Wave but it shows the
experience with producing
wafers on a technology
capable for mm-Wave
applications




Comparisons with RFCMOS
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= At the device level, RF CMOS can achieve
similar RF performance to SiGe HBTSs, but at
much more advanced nodes

= For the moment, SiGe BiCMOS has a
distinct cost advantage over the equivalent
RF CMOS node

= SiGe HBTs have at least a 0.5V
advantage in usable supply voltage but
usually it’s quite a bit more since
devices are often operated past BV ¢,




Comparisons with InP
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= InP-based devices can
achieve similar RF
performance to SiGe HBTs
with much higher breakdown
voltage but at several times
the cost per die

= InP technologies also offer
a much lower level of
integration




Overall mm-Wave Technology Comparison Table

For technologies currently in production

Technology | F; (GHz) Supply Level of Quality of | Cost
Voltage (V) [ Integration | Passives

45nm High Medium
RFCMOS?

SiGe 240 280 >1.6 Medium Medium Low
BiCMOS?

InP HBT? 250 300 >4 Low High High

1. ITRS Tables
2. TowerlJazz SBC18H3
3. Northrop Grumman 0.6um InP HBT Technology

= SiGe BiCMOS offers a kind of “sweet-spot” for mm-wave applications
due to its combination of RF performance with low cost and adequate
levels of integration and quality of passives.




Key mm-Wave Components
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SiGe HBT  Capacitors Transmission Inductors Varactors p-i-n Diodes RF Ground
Lines

= All of these components need to be stable and well-characterized out to very high freq.
= |deally all of these components could be integrated onto a single chip




SiGe HBT Device: SBC18H3

Minimum footprint device

e

= Towerlazz’ 3" generation fully self-alighed 0.18um SiGe BiCMOS
process technology

= CMOS and back end are exact replicas of mature SBC18
technology family (>1 decade, >150,000 wafers)




Advanced SiGe HBTs: What matters to mm-
Wave Designers?

= Noise (RF and 1/f)

" F; vs. Fyax

= Gain at low current (low V)
" Gain in saturation (low V)
" Transconductance (G,, / Y,,)
= Short-emitter devices

= Wide Emitter devices

" BVier
" Linearity




RF Performance
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RF Performance with Process Variation
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= SBC18H3 has been designed for process insensitivity

= +/- 5s variation in base doping only leads to about +/- 1% in FT
= Even beyond rework limits, most challenging mask alignments will lead to
only +/-3% in FT




RF Noise
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= Minimum noise figure is = |deally the NF is very flat
substantially improved with across bias since the NF,,, never
each succeeding process coincides with the peak gain

generation along with F; / F,ax condition




Gain vs. Noise
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Varactors
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Hyper-Abrupt Junction Varactor
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= BiCMOS technologies offer two types: AlOO: .
= Hyper-abrupt p-n junctions for - E
linearity § i
= MOS for high Q 3 S ",
= Varactor Q is often the limiting factor in S O LY
the loss of the VCO circuit. : 5 \
= At mm-wave frequencies the Q of both ”o 2 10 *ho' S
devices starts to look similar 2 g ] : X ]
* Frequency synthesis at Y 100GHz usually © 1l * Junction Varactor .:
uses harmonic generation so Q at 50 or O ><E - MQS.\./?TE.&,Ctor ——r

even 33 GHz might be most important
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Other VCO Topologies
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* MOSFETs are used to switch MIM
capacitors in or out of the circuit.
These are often used in parallel
with a traditional varactor for
ultra-linear fine-tuning
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*A key enabling feature for these
devices is accurate modeling of
ultra-small MIM capacitors
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p-i-n Diodes

DC Switch
Voltage

p-i-n Diode
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* p-i-n diodes can be used as RF
switches when surrounded by a bias tee
» Off-State capacitance is very low due
to low-doped n- intrinsic region
inherent in BiCMOS technologies
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p-i-n Diodes
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* Smaller devices exhibit lowest best isolation due to lower total capacitance but
suffer somewhat in insertion loss due to higher series resistance.

* At high frequencies it seems as if RS is no longer the limiting factor for IL.

» 2x2um devices project to at least -10dB of isolation with better than -3dB of IL at
100GHz




RF Ground Solutions

*Deep Silicon Vias

*Through-Silicon Vias

emitter

collector
| *: ] ] . # ] ]
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\ v,
* Extremely “localized” grounding. DSVs * Through-Silicon Vias for low inductance /

can be placed within several ums of
active devices.

* <5pH/via. <50 W/via

* In production now

low resistance emitter ground leads

* 1000 um2 Pad can produce 22pH
inductance to ground with less than 1W/via
* In prototype now




RF Back End
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* Top 3um metal used for inductors

e 11um separation between M6 and silicon

» Slotted vias available for inductor underpasses

e Can use M6 ground shield combined w/Bump bonding for uninterrupted ground plane
T .

M1 ground shield




Complete SBC18H3 Device Roster
Famiy |Devie | Characterisis

CMOS

Bipolar

Resistors

Capacitors

Varactors

RF Diodes

1.8V CMOS
3.3V CMOS
HS NPN

STD NPN
LPNP

Poly

Metal

Single MIM
Stacked MIM
1.8V MOS
Hyper-abrupt junction
p-i-n
Schottky

Model-exact copy of all other TJ 0.18um CMOS

240 GHz F; / 280 GHz Fy,

55GHz F; / 3.2V BV,

=35

235 Q3/sq and 1000 €/sq

25 QO/sq TiN on M3

2 or 2.8 fF/um?

4 or 5.6 fF/um?

Q @ 20GHz =20

Q @ 20GHz =15, Tuning Ratio =21%
Isolation <-15dB, Insertion loss > -3.5dB at 50GHz
F. > 800 GHz




Roadmap

= Prototype devices for SBC18H4 have
been built but require some special
processing steps that are not ready for
manufacturing yet.

= Rev. 0 model available now
(otherwise compatible with H3 kit)

= Tentative date for PDK and first
allowed tape inis July 2012

= Advantages of SBC18H4 will be along
the same lines as H3 over H2 (higher
Fuaxe lower NF,,\)
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° SBC18H3 LN122, We=0.13,Le=5.0 um
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= Accurate RF models are almost more critical than the process they are trying to
model!

= Challenges with calibration and de-embedding at mm-Wave frequencies make RF
modeling a complex science.




Circuit examples from past technology generations
80GHz RX+SX Test Results
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= W-band 5-Stage LNA built in SBC18H2
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Freqgency (GHz)

= 80GHz LNA built in SBC18H2 Technology (Courtesy
Sabertek Inc.)

= Simulated data shows accuracy of models out to mm-wave frequencies

= Even past generation devices seem adequate to create reasonable circuits
out to 90GHz

= New generations push past 100GHz and lower power consumption for
circuits at lower frequencies

S11 (dB)




Conclusion

= SiGe BiCMOS technologies capable of producing
practical circuits operating up to at least 100GHz are
currently available

" These technologies are based on a background of
nearly a decade of high-volume processing

= Newer generations increase design margin and
reduce power consumption at mm-Wave
frequencies, making them more suitable for
commercial manufacturing
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