
CICC 2018 San Diego, CA 1

Session 15 – Design Foundations for Advanced Technologies

Analog/Mixed-Signal Design Challenges 
in 7-nm CMOS and Beyond

A.L.S. Loke, D. Yang, T.T. Wee, J.L. Holland, P. Isakanian,          
K. Rim, S. Yang, J.S. Schneider, G. Nallapati, S. Dundigal,          

H. Lakdawala, B. Amelifard, C.K. Lee, B. McGovern,                   
P. S. Holdaway, X. Kong, and B.M. Leary

San Diego, CA & Raleigh, NC

CICC 2018 San Diego, CA

Presenter
Presentation Notes
The slide guide is meant to be used with PowerPoint.




CICC 2018 San Diego, CA

Mobile SoC – Main Driver for CMOS Scaling
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• 7nm smartphone products imminent
• SoC technology driven by economics       

of logic & SRAM scaling
• New node feasible with enough PPAC 

(Power/Performance/Area/Cost) benefit
• Incremental feature size reduction
• Extensive logic & SRAM DTCO

• AMS (Analog/Mixed-Signal) ubiquitous
• PLLs, wireline I/Os, ESD, regulators,       

data converters, bandgap references
• AMS device palette slaved to logic
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• Introduction
• Technology Scaling Enablers

• FinFET
• Lithography & Self-Aligned Patterning
• High-K Gate Dielectric & Metal Gate (HKMG)
• Mechanical Stressors
• Middle-End-Of-Line (MEOL)

• AMS Device Palette
• AMS Design Impact
• Concurrent Technology/Design Development
• Conclusion
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Stronger Short-Channel Gate Control
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• Subthreshold controlled by Cox vs. (CB+CD)
• Fully-depleted finFET weakens CB & CD  less S, DIBL & body effect
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Fully Depleted Tri-Gate FinFET
fully 

depleted
body

p-substrate

drain

well
STIsource

well tie

• More Ion & gm per area
• Quantized channel width
• Less DIBL  higher rout, 3× intrinsic gain
• Negligible body effect (ΔVT < 10mV)
• Less RDF mismatch
• Parasitics

• High S/D resistance  big deal
• High S/D coupling to gate
• Fin width << fin pitch  low Cj, high Rwell
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Foundry Pitch Scaling

• Scaling rate slower than 0.7x per node  node name = PPAC marketing
• EUV late, only started at 7nm  process complexity for sub-80nm pitch
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Lithography Innovations
Pitch splitting (LELE)
• Interleave single exposures
• Mask color decomposition & balance
• Extendible to LELELE
• Limited by overlay between masks

Mask 
A

Mask 
B

Orthogonal cutting
• Extra mask(s) to break line patterns
• Reduced end-to-end spacing
• Limited by overlay in very tight pitch

cut mask 
pattern

Auth et al., Intel [12]
Arnold et al., ASML [11]
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Spacer-Based Patterning
• Pattern fins; now common for gate, MEOL & lower BEOL
• Conformal spacer  correlated LER  less width variation
• Mandrel & spacer width control critical to minimize pitch walking
• Only one feature width, but can be trimmed with extra mask

Spacer 2

SAQP

Spacer 1

SADP
mandrel

Choi et al., UC Berkeley [13]
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Self-aligned via
• Dual-damascene metal integration
• Conceptually similar to cuts
• Via etch only at intersection of 

trench & via masks

Self-Aligned Metal Patterning

metal trench 
hard mask

ILD

SADP/SAQP + block mask
• Block mask to bridge several spacers
• Adjust mandrel width/space for more 

flexible metal width/space

block mask

Woo et al., Globalfoundries [15]

via mask

via etch
Brain et al., Intel [16]
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High-K + Metal-Gate (HKMG)  Higher Cox
• Less Igate, no poly depletion
• Replacement metal gate 

(RMG) for stable VT with 
delicate HK/MG interface

• VT tuning with ALD MG stack 
composition & HK dipoles    
 less variation than implants

• High gate resistance
• High S/D resistance           

with silicide last

silicide only 
at bottom
of contact

S/D trench 
contact

gate
spacer

HK dielectric
MG
metal fill

gate cap HKMG
over fin

fins with S/D 
epitaxial fill

Hou, TSMC [9]
Auth et al., Intel [14]
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Mechanical Stressors  Mobility Boost
• Induce channel strain along L with surrounding stressors

• Tensile for NMOS, compressive for PMOS (but reality very complicated)
• Techniques: S/D fin recess & epitaxy, gate stress

• More effective for PMOS, β ratio  1, not scaling well with CGP
• Less effective for longer L

NMOS PMOS

Chan et al., IBM [20]



CICC 2018 San Diego, CA 13

gate

Complex MEOL & Self-Aligned Contacts
• Tight CGP  tough to land diffusion & gate contacts without shorts
• Dielectric caps protect gate & contact against etch
• Self-aligned gate contacts over fins, not restricted to gate overhang
• More interfaces  high S/D, MEOL & lower BEOL resistance

metal

gate
dielectric 

cap
self-

aligned
contact

contact
dielectric 

cap self-aligned 
S/D via

self-aligned
gate contact

gate
contact

diffusion
contact

metal

gate

Yang, Qualcomm [10]
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Single vs. Double Diffusion Break
• Dummy gates terminate OD to constrain S/D epitaxy
• SDB eliminates dummy gate waste  saves 10–20% logic area
• Aggressive tensile dielectric isolation for SDB  stress LDE

DDB SDB

Yang et al., Qualcomm [22]

dummy 
gates
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Stacked FET for Higher rout
• Lmax limited by gate litho/etch loading & HKMG CMP
• Short L has most µ boost  potentially less area
• Intermediate diffusions degrade HF rout (gain, CMRR, …)
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Thick-Oxide I/O FET
• GPIOs still use 1.8V swing despite reduced core VDD

• Talk to peripheral ICs made in lower cost nodes

• Challenging to keep 1.8V I/O devices
• Tighter fin pitch  tough ALD gate fill
• Complex level shifters to handle larger ΔVDD
• Many links stopped supporting legacy modes to 

enable higher data rate & lower power
• Improve power & area with thinner I/O oxide, 

e.g., 1.2V
tighter fin pitch

Wei et al., Globalfoundries [25]
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Resistors 
• MEOL thin film resistor

• HKMG  poly resistor obsolete
• Variation limits area scaling

• Gate resistor – unusable, high variation

Inductors
• Upper BEOL layers
• Small impact from scaling, but more fill

Passives (RCL)
Capacitors
• BEOL MOM (Metal-Oxide-Metal)

• High density with metal pitch scaling
• Reduced AC coupling efficiency

• Accumulation-mode varactor
• Steeper C-V transition

• Upper-BEOL MIM – uncommon in mobile

p-substrate
n-well

n+ n+
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Diodes
• High Rwell  stricter well tie, guard ring & latch-up rules
• ESD & latch-up guidelines immature during technology development

STI ESD DiodePNP-BJT (Analog Diode)

p-substrate
p-welln-well

emitter base collector
n+p+ p+

p-substrate
n-well

n+p+
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• Technology Scaling Enablers
• AMS Device Palette
• AMS Design Impact

• Parasitics
• Layout-Dependent Effects (LDEs)
• Layout Considerations

• Concurrent Technology/Design Development
• Conclusion
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Diffusion & MEOL Resistance
• Challenging for high-current circuits, e.g., I/O drivers, clock buffers
• Double-source layout halves S/D Rcontact (despite higher C)
• Extend SAC to land extra diffusion via

short together

diffusion 
contact (SAC)

extra self-aligned 
diffusion viaextended SAC

gate

fin
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BEOL Resistance
• Aggressive M1-M3 pitch scaling for dense 

logic routing  less die area & cost
• Meticulous pitch optimization for PPAC
• High-ρ TaN barrier cladding Cu wire not 

scaling with metal pitch

Auth et al., Intel [14]
Yang et al., Qualcomm [22]
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• Barrier-less cobalt & ruthenium with 
higher ρ are promising material enablers

Co
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Low-Voltage Bandgap Reference

• Higher RD  smaller N  variation sensitivity
• Higher VD from high well doping  higher VDD (e.g., 1.2V) for headroom
• Variation dominated by PMOS mirror mismatch  trimming

 

Io Io AIo

N

log(ID)
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Io/N & Io
range

1

higher 
series
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Banba et al., Toshiba [26]
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Thermal Sensor with RD Cancellation

ADC

• Measure ΔVBE at M:1 & N:1  cancel RD

• DEM  cancel Io mismatch
• Swap amp inputs  cancel diode mismatch

N+1 identical Io
partitioned into   
1, M & N

ΔVBE,M =         ln M + (M-1) Io RD
ηkT
q

ΔVBE,N =         ln N + (N-1) Io RD
ηkT
q

ηkT
q =

(N-1)ΔVBE,M – (M-1)ΔVBE,N 

(N-1) ln M – (M-1) ln N

RD

Io

ON Semiconductor [27]
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Parasitic Capacitance Impact on Analog
• S/D trench contacts & gate form vertical plate capacitors
• Adding capacitance increases area & wake-up time (burst-mode)

Vout

Vref

CGD
Vin

Vbias

Vref

Vout

CGS

Kickback noise 
in LPDDR RX

Worse PSRR in 
LDO regulator
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Stress LDEs
• Stronger stressors & layout effects  schematic/layout Δ
• Stress build-up in longer OD, ID per fin not constant vs. # fins
• Interaction with surrounding tensile STI & ILD stress
• NMOS/PMOS stress mutually weaken each other

NMOS PMOS

Faricelli, AMD [29]
Garcia Bardon et al., imec [30]

Bianchi et al., STMicroelectronics [31]
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Gate Cut Stress LDE
• Gate cut disrupts mechanical support of continuous gate 
• Modulate stress near cut  Δµ & ΔVT, modeled in post-layout netlist

Yang et al., Qualcomm [22]

fins

gate

gate
cut impacted 

device

tensilecompressive

no gate cut with gate cut
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Continuous OD for Performance & Matching

stress plateau 
for active 

gates

dummy
gates

dummy 
gates

OD
stress

(µ)

µ variation in 
short OD

constant µ in 
continuous OD

• Build up stress plateau 
for higher µ

• Desensitize FET from 
µ variation in short OD

• Most critical for short L
with strongest LDE

• Matched FETs also 
need matched spacing 
to surrounding devices
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HKMG LDEs

PMOS 
fins

NMOS
fins

ΦM1
gate

ΦM2
gate

Metal Boundary Effect
• ΔVT near border of different ΦM
• Interdiffusion of ΦM
• Modeled in post-layout netlist

Yang et al, Qualcomm [24]
Hamaguchi et al., Toshiba [33]

ΦM metal metal fill

Gate Density Induced Mismatch
• ΔVT from RMG CMP dishing
• ΦM influenced by metal fill & 

sidewall MG
• Not modeled, contained with DRC
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Current Mirror with Enable Devices
• Short L patterned by SADP;             

long L with conventional 2nd mask
• SADP prone to litho/etch loading 

effects
• Consistent L more SADP-friendly
• Avoid mixing short- &                      

long-channel FETs
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Layout Density & Floorplan Considerations

• Floorplanning more tedious & bloated
• More dummy gates, well taps, guard rings
• Transitions between different device 

types & pattern densities

• Tougher DRCs  AMS layout resemble logic arrays

• Density checks to reduce long-range pattern variation 
 iterative rework of smaller cells
• Contacts, vias, cuts, tight-pitch metal
• Area, perimeter, gradient
• Larger checking windows
• Density union of multiple metal levels

Synthesized Digital

Decoupling 
Capacitance

Transition

Transition
Custom Digital

AMSAMS

ADPLL partial floorplan
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• Introduction
• Technology Scaling Enablers
• AMS Device Palette
• AMS Design Impact
• Concurrent Technology/Design Development

• Perspectives
• Dealing with Model Uncertainties

• Conclusion
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Bleeding-Edge Product Development
• Design while technology being developed to shorten time-to-market

• Multiple models & iterations
• Earlier design start & finish

Initial
Design

Time

Updated
Design

Final
Design

Test Chip
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ty

Speculative
Models

Silicon-Influenced
Models

Silicon-Based
Models

Bair, AMD [1]

ideal, never reality
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Dealing with Target-Based Model Uncertainty

• Process development areas, even after tapeout
• HKMG stack & RMG optimization to tune multiple VT
• S/D epitaxy, MEOL modules (contacts, vias & metal)
• Logic & SRAM area-saving constructs (SDB, S/D jumper)

• Most vulnerable (unstable) model parameters
• FET VT, µ, LDEs
• Long L & I/O FETs usually impacted, not priority #1
• RC parasitics in S/D & MEOL

• Trade incremental AMS area for reduced exposure

• Process at tapeout more immature in each new node
• More masks & longer fab cycle time  fewer cycles of silicon learning
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Overcoming Process/Model Immaturity
Layout Guideline Reduced Exposure
Use continuous OD stress plateau

Stress LDEs (S/D epitaxy, STI)Attach dummy FETs to OD ends
Avoid single-diffusion break
Use only one ΦM in each gate Metal boundary LDE
Avoid using gate as interconnect Gate cut LDE
Contact gate on both sides

Gate resistance, ΦM tuning to adjust VTUse groups of fewer fins
Use double-source layout for high-I nets S/D contact resistance & epitaxy
Extend S/D contact to land extra via MEOL & S/D resistance
Do not push DRCs to limit DRC updates
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Conclusion
• AMS design in remaining CMOS nodes is tedious & about 

managing technology-imposed non-idealities
• AMS area scaling 0.8-0.9x per node vs. 0.5x for logic/SRAM
• Parasitics & LDEs only get worse, will ultimately limit scaling
• Digital-friendly AMS design inspires new performance, power 

& integration levels
• Implementation just requires a lot more perspiration
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