
Agile Hardware Design with a
Generator-Based Methodology

Elad Alon

UC Berkeley

2

Driving Applications Are Diversifying

2

• Custom silicon needed for the cloud
and a diverse set of applications with
varying demands

PCs and
laptops

Smartphones

1970 1980 1990 2000 2010 2020 2030

Mainframes

Not for general redistribution 3

ASICs Are Expensive

3
[Source: IBS]

~$300M development cost

Not for general redistribution 4

ASICs Are Expensive

4
[Source: IBS]

~$5/chip manufacturing cost

~$300M development cost

Not for general redistribution 5

ASICs Are Expensive

5
[Source: IBS]

~$5/chip manufacturing cost

~$300M development cost

Need to ship 60M units for
manufacturing cost to equal design
cost…

6

Software Had a Similar Problem
 “Waterfall” development:

 “Agile” development:

Specification
Architectural design

Implementation
Verification and test

Support and maintenance

S
A

I
V

S

< 1 yearS
A

I
V

S

S
A

I
V

S

> 1 year

Fox, Patterson, 2013.

7

Software Had a Similar Problem
 “Waterfall” development:

 “Agile” development:

Specification
Architectural design

Implementation
Verification and test

Support and maintenance

S
A

I
V

S

< 1 yearS
A

I
V

S

S
A

I
V

S

> 1 year

Fox, Patterson, 2013.

Approach On-Time Late Cancelled
Waterfall 10% 52% 38%
Agile 76% 20% 4%

8

Can Chip Design Be Agile?

• Need methodologies and flows for:
• Scalable designs
• Rapid design turn-around
• Aggressive re-use
• Agile verification and validation

S
A

I
V

S

S
A

I
V

S

S
A

I
V

S

9

The Key Missing Piece
• Dearth of re-use is the dominant problem

• Yes, lots of IP is out there
• But that IP is largely “black-box” - hard to extend, modify, verify

• Approach: don’t deliver instances – capture designer
methodology in generators!
• Facilitates re-use via parameterization and incremental extension

(of the generator – not the instance)

• So how do we do this, and how well does it really work?
• Answering this question is the goal of our DARPA CRAFT team

10

CRAFT Team

Design Center

Elad Alon (PI), Borivoje Nikolic (co-PI),
Jonathan Bachrach, Koushik Sen

Mike Stellfox, Joseph Cole

Richard Berger
Silviu Chiricescu

Research Center

Steven Shauck,
Matthew Doerflein

Contains unpublished material – do not redistribute

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPX3iJjgocgCFYg7PgodSzAFig&url=http://www.berkeley.edu/atoz/dept&psig=AFQjCNEq84w3ImK0u4RtVMgiiQ6mAUGIAg&ust=1443805331696078

11

Outline
• Agile Design

• Generators for Digital: Chisel, FIRRTL, and Hammer

• Generators for Analog: BAG
• Overall Flow + Verification
• Generators and SoCs
• Effort Data and Looking Forward

12

Digital Generators: Chisel

• Constructing Hardware In Scala
Embedded Language

• Chisel is a Hardware Construction
Language:
• Software library whose classes

represent hardware primitives
• Methods connect the classes together
• So executing the software constructs

a graph representing the RTL
J. Bachrach et al., DAC 2012

13

Chisel Provides Same Control as RTL
• Same hardware abstraction

level
• Compiler is NOT fancy
• Very different from high-level synthesis

• Higher software abstraction level
• Powerful parameterization, functional

and object-oriented programming,
static typing

• Huge base of existing software libraries

hmm... let’s
make a

counter......

reg [4:0] count;
always @ (posedge clk)

count <= count + 1;

val count = Register(5.W)
count := count + 1.U

Verilog Chisel

ChiselDSP

• Supports number representation agnostic generator design
• Datatypes and associated operators can real/complex, fixed/floating-point

without rewriting any of the core generator code

14

𝑦𝑦 𝑛𝑛 = �
𝑘𝑘=0

𝑁𝑁
ℎ 𝑘𝑘 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]

IO ParametersDspComplex
DspReal

FixedPoint,
Interval

Contains unpublished material – do not redistribute 15

Chisel-Designed Chips

May

Raven-1

Raven-2

Raven-3 Raven-4

EOS14

EOS16
EOS18

EOS20 EOS22 EOS24

2011 2012 2013 2014 2015

May Apr Aug Feb Jul Sep Mar Nov Mar

SWERVE

Apr

Hurricane-1

2016
Jul Mar

Hurricane-2

CRAFT-0

2017

Craft-FFT2

CraftP1

Raven, Hurricane: ST 28nm FDSOI, SWERVE: TSMC 28nm EOS: IBM 45nm SOI, CRAFT: 16nm TSMC

Chisel3

CRAFT: EAGLE

2018

Jun

CRAFT: AI

16

Important Note About Reuse
• Downstream constraints may require changes to RTL

• Separating concerns between RTL and platform-specific
optimizations maximizes reuse

17

Borrow From Software Again
• FIRRTL: Flexible IR for RTL

• Basically “LLVM for hardware”

• Frontend parser translates RTL source
into IR

• Transformations on IR enable project-
or platform-specific changes
• Without altering the original RTL
• Transformations are composable

• Backend emits the final design

rocket-chip.scala

rocket-chip.v

high2mid

mid2low

lowOpt

Chisel 3.0

verilog backend

rocket-chip.middle.fir

rocket-chip.low.fir

rocket-chip.opt.fir

rocket-chip.fir

A. Izraelevitz et al., ICCAD 2017

18

A Chisel Environment for DSP
Generator Design

• Combination of FIRRTL and ChiselDSP capabilities enable single,
unified environment for algorithm and hardware design as well as
development

A. Wang et al., DAC 2018

19

Digital Physical Design

• CAD tools highly automated and
very powerful
• And Cadence’s recently introduced

common user interface further
streamlines RTL to GDS flow by
enabling a single environment
across tools

D
es

ig
n

Im
pl

em
en

ta
tio

n

Innovus™
Implementation System

Stratus™
High Level Synthesis

Genus™
RTL Synthesis

Conformal ®
LEC, ECO, LP

Modus™
Test Solution

Joules™
RTL Power

Quantus™
Signoff Extraction

Tempus™
Signoff STA

Pegasus™
Verification System

Voltus™
Signoff PowerSi

gn
of

f
D

es
ig

n
C

re
at

io
n

C
om

m
on U

ser Interface

20

Generators for Physical Design
• Nonetheless, designer knowledge/expertise still critical

• Follow the same basic approach and capture expert designers’
methodologies as executable code

• Hammer is a newly developed framework to enable this
• Example floorplans generated by Hammer:

21

Outline
• Agile Design
• Generators for Digital: Chisel, FIRRTL, and Hammer

• Generators for Analog: BAG

• Overall Flow + Verification
• Generators and SoCs
• Effort Data and Looking Forward

22

Core Analog Design Loop

23

A More Representative Depiction…

Draw/(Re-)Size
Schematic
(Virutoso)

Verify specs
(simulate)

(Re-)Draw
Layout

(Virutoso)

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPX3iJjgocgCFYg7PgodSzAFig&url=http://www.berkeley.edu/atoz/dept&psig=AFQjCNEq84w3ImK0u4RtVMgiiQ6mAUGIAg&ust=1443805331696078

24

Reminder: Proposed Approach
• Reuse the

core analog
design loop
itself
• Not the

results of it

Draw/(Re-)Size
Schematic
(Virutoso)

Verify specs
(simulate)

(Re-)Draw
Layout

(Virutoso)

25

Berkeley Analog Generator (BAG)

Perf.
Specs.

Tech.
Files

Design
Tools

Verified
Design

Instance

Circuit
Generator

BAG2

• Open-source Python-based
framework allowing
executable specification
of design procedure

• I.e., BAG takes care of the
“plumbing”
• BAG’s Python scripts interact directly

with user’s Virtuoso instance J. Crossley et al., ICCAD 2013
E. Chang et al., CICC 2018

26

Full Generator Overview
• Schematic/layout generators

produce actual views based on
low-level structural parameters

• Design script captures
algorithm that translates input
specifications to structural
parameters

27

Design Script Example

• Designer codifies methodology in Python

• I.e., based on specs/simulation results, how would you
choose/modify circuit parameters
• Design equations, transistor lookup tables, binary search, etc.

28

Example 1: EM-Driven Resistor Sizing

• Designer codifies methodology
in Python

• I.e., based on specs/simulation
results, how would you
choose/modify circuit
parameters

Given Ibias
and Rtarg

Assume max
width,

compute NR

Reduce WR to
just hit EM

spec

Done

Compute LR
to meet Rtarg

LR < Lmax?

Break into
series

resistors

Yes

No

29

Example 2: Diff. Amp. Sizing

30

Methodology for Layout?
• Hard to “reuse” a bunch of polygon drawing commands...

• Really want to re-use the “floorplan strategy”
• I.e., how to construct the floorplan as a function of the parameters

• Two key realizations enabling portability and parameterization:
• Focus on capturing “conceptual” floorplan and electrical constraints

instead of process-specific geometry details
• Enforce a routing (and hence device) grid to simply DRC issues (even in

advanced processes)

31

Floorplan Invariance Example
TSMC 16nm TSMC 28nm GF 45nm RFSOI

• Rows of transistors, internal connections vertical, external
connections horizontal

• General structure driven by electrical constraints, and remains
invariant across technologies

32

Addressing DRC Explosion

• Advanced processes push even
custom layouts to be template/grid
based

• BAG improves portability by
enforcing a layer-by-layer,
customizable routing grid

33

Example: Diff. Amp. Generator

Gain (V/V) BW (GHz)
2.07 4.12
2.22 4.15
2.17 4.03

• Input specs: Gain, BW

• Same code produces all three
(DRC/LVS clean) instances
• Only code difference is implementation

of process-specific primitives

34

Some More Generators We’ve Built So Far
SAR ADC

Switch-Cap DAC

Comparator R-ladder DAC

Time-Interleaved SAR ADC SerDes TX

SAR ADC

SerDes RX

35

Yes, These Are Portable and Parameterized Too

ST 28nm FDSOI

GF 22nm FDX

TSMC 16nm

ADC Core SerDes RX Datapath

TSMC 16nm

GF 45nm RF PDSOI

SerDes RX Core
(variable taps)

36

Performance?

• Generated circuits can be even better
than custom…
• Computers are much better at iteration

than humans

VGA, CTLE, FFE

2nd, 3rd taps

2nd, 3rd taps

QE
/QE

QO
/QO

/CK

CK

CK

/CK/CK

CK 1st
tap

Integrator Dynamic summer Dynamic latch
DIP

DIM
Delay

Delay

60Gb/s DFE
in 65nm CMOS

37

Outline
• Agile Design
• Generators for Digital: Chisel
• Generators for Analog: BAG

• Overall Flow + Verification

• Generators and SoCs
• Effort Data and Looking Forward

38

CRAFT Generator-Based Flow

• Verification costs just as much as or even more than design
• If generating the designs, need to generate the verification

environment and tests too

39

CRAFT Generator-Based Flow

• IP-XACT used to pass parameters
• So that verification generators know what the instance actually is

40

Verification Generators
• Really two parts to this:

(1) Producing and checking the
correct vectors Python Vector Generator Python Vector Generator

41

Verification Generators
• Really two parts to this:

(1) Producing and checking the
correct vectors

(2) Hooking everything up correctly

 Python Vector Generator

42

Verification Generators
• Really two parts to this:

(1) Producing and checking the
correct vectors

(2) Hooking everything up correctly

• When done manually, (2) can actually
be the dominant time sink (and source
of errors)
• Fortunately, Cadence’s Verification

Workbench automates this as well
• And automatically provides VIPs for

standard interfaces, analysis of
crossbars, …

 Python Vector Generator

Simulation Flow

Verification-ready UVM
Testbench with VIP

agents
Xcelium

Simulation

Design
Meta DataVIP

Meta Data

Verification Workbench

UVM TB Automations
+ VIP SV interface connection
+ UVM REG integration
+ Virtual sequencer creation
+ TLM Analysis port hookup
+ Example test cases

Build & Run
+ Create SV code for

UVM TB
+ Auto-create scripts

to compile, link and run
+ All VIP’s
+ DUT source files
+ UVM TB

43

Applies At Multiple Levels of Hierarchy

Rocket
Core MemcpyHwacha

TileLink Crossbar

MMIO Manager

L2
cache

PLIC

JTAG

Rocket Chip
RoCC

3rd party IP

TileLink
Stream

AXI4

Top level TB ‘C’
based HW/SW
application
execution
environment

UART AXI to
APB

CRAFT

TileLink Umbilical JTAG

UART

APB

Tuner PFB FFT SAM

AXI4 Crossbar

SCR

AXI4 Crossbar

Filter

SAM

SAM

SAM

Pattern Generator

Front-end-
server

Python
vector

generator

Custom ‘C ‘
tests

Proxy kernel

SoC Full-Chip
Testbench

Verification
Workbench
generated
block UVM

testbenches

Verification
Workbench
generated

interconnect
UVM

testbenches

Top-level C
testbench

44

Outline
• Agile Design
• Generators for Digital: Chisel
• Generators for Analog: BAG
• Overall Flow + Verification

• Generators & SoCs

• Effort Data and Looking Forward

45

 Rocket processor system can include:
• RISC-V processor(s), memory sub-system (L1/L2 caches, SRAM

main memory), vector co-processor, DMA engine, serial adaptor,
UART (3rd party IP), …

 DSP chains parameterized in terms of:
• Composition, bitwidths, pipeline depths, number of lanes, data

types, connections to PG/LA, …

SoC Generator: High-Level View

46

Enabling Verification and Extension

 SoC architecture and generator designed
to enable verification
and extension:
• All DSP block inputs/outputs use

AXI-Stream for data, AXI-4 for control
• “DSPBlock” generator automatically

packs/unpacks data, adds SCR
• “DSPChain” generator automatically

(configurably) adds Streaming to AXI
Memory (SAM), expands crossbars,
adds testing MUXes, …

47

Generated TSMC 16nm SoC: CraftP1

• ~8GS/s, ~6 ENOB 40mW ADC
• EW DSP @ 200-400MHz: tuner, FIR, PFB, FFT

– all testable via PG/LA
• 200-400MHz Rocket core, 4-lane vector proc.,

DMA accelerator, 512kB L2 cache, 8MB SRAM

48

Generated TSMC 16nm SoC: FFT2

• Sparse sampling ADC, 500MHz
sparse FFT, Peeling decoder DSP

• Generated 15Gb/s SerDes front-end

E. Chang et al., VLSI 2018
A. Whitcombe et al., VLSI 2018
A. Wang et al., ESSCIRC 2018
S. Bailey et al., ASSCC 2018

49

Yes, The Silicon Worked

SerDes Frontend:

50

Outline
• Agile Design
• Generators for Digital: Chisel
• Generators for Analog: BAG
• Overall Flow + Verification
• Generators & SoCs

• Effort Data and Looking Forward

51

Phase 1 Chips and Generators

ADC
Generator

10.3M Gate Signal Analysis SoC (CraftP1) 4.2M Gate Sparse Recon. SoC

SerDes Frontend
Generator

RISC-V
Generator

DSP
Generators

Accel.
Generators

52

Phase 1 Chips and Generators

ADC
Generator

10.3M Gate Signal Analysis SoC (CraftP1) 4.2M Gate Sparse Recon. SoC

Ported signal analysis
SoC to GF 14nm with
5X less effort

SerDes Frontend
Generator

RISC-V
Generator

DSP
Generators

Accel.
Generators

53

Phase 1 Chips and Generators

• CraftP1 SoC effort ~2-2.5X lower than effort estimator
figures for a 28nm design!
• Even though CraftP1 numbers included tech. setup and substantial

methodology/flow development

54

Phase 2 Chips and Generators

2.3M Gate AI Accel.

Full SerDes
Generator

ADC/DAC
Generators

RISC-V
Generator

24.6M Gate Multiprocessor SoC (EAGLE)

RF Frontend
Generators

Accel.
Generators

Massive MIMO RF FE

55

Phase 2 Chips and Generators

• CraftP1 vs. EAGLE – ~2X less eng. effort for:
• ~2.5X more gates
• ~3X higher core frequency
• ~4X higher analog/mixed-signal complexity

 Clearly demonstrates generator re-use benefits

56

Another Teaser

Silicon

VWB
Testbench
Generator

Python
Vector

Generator

UVM
Testbench

Stimulus +
Expected
Results

RTL Design

Simulate &
Debug

vManager
Incisive

JasperGold
Indago

Simvision

Test and
coverage
results

Front-end
Physical
Design

Stylus-Genus
Innovus
Tempus

Conformal

Back-end
Physical
Design

Quantus
Virtuoso

PVS

Develop &
Select
Tests

IPXACT

IPXACT

C Headers

Verilog

C

Define
Instance

Parameters

Manual work
Automated

Results

Hammer
Physical

Generator

BAG Design
Generator

Chisel
Design

Generator

System
Verilog

Schem., Layout, Extracted Results

57

Another Teaser

• For fully generated designs, ~1 week from parameter
change to new, verified SoC instance!

58

 “Are you really saying that hardware designers – even analog and
layout engineers – should be writing re-usable code?”
• Yes – hire a Berkeley undergrad if you need help with coding

 “What if I don’t know what my methodology is?”
• If you designed a circuit, you must have had some kind of methodology
• Generators force you to “record” (think more carefully about) what you

actually did (in code)

 “What about future technologies with ML-GM, AI-FETs, and
SIBL?”
• Key is once again to figure out what your own methodology actually is

Wrap-Up: Common “Questions”

59

How You Can Get Started
• Open-source boot-camps available here:

• Chisel: https://github.com/ucb-bar/generator-bootcamp
• BAG: https://github.com/ucb-art/BAG2_cds_ff_mpt

• Reach out to me if you are interested in participating in a live/hosted
bootcamp

• All generators developed under CRAFT are open-source and/or available for
government use
• Again, reach out to me if you are interested in finding out more
• My email: elad@berkeley.edu

https://github.com/ucb-bar/generator-bootcamp
https://github.com/ucb-art/BAG2_cds_ff_mpt
mailto:elad@berkeley.edu

60

Acknowledgments
• DARPA CRAFT
• UCB – CDN – NGC – BAE Team:

• UCB: Stevo Bailey, Paul Rigge, Angie Wang, Eric Chang, Colin Schmidt,
John Wright, Richard Lin, Adam Izraelevitz, Jaeduk Han, Howard Mao, Albert Ou,
Zhongkai Wang, Chick Markley, Nathan Narevsky, Woorham Bae, Kosta
Trotskovsky, Marko Kosunen, Edward Wang, Pengpeng Lu, Brian Richards,
Jonathan Bachrach, Borivoje Nikolic

• NGC: Steven Shauck, Sergio Montano, Justin Norsworthy, Munir Razzaque,
Wen Hau Ma, Akalu Lentiro, Matthew Doerflein

• Cadence: Darin Heckendorn, Chirag Goyal, Rudy Mason, Jim McGrath,
Franco DeSeta, Mark Snowden, Ronen Shoham, Mike Stellfox, Eric Naviasky,
Dan Fuhrman, Joseph Cole

• BAE: Silviu Chiricescu, Richard Berger, Kendall Farnham
• BWRC and ADEPT sponsors

	Agile Hardware Design with a Generator-Based Methodology
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	ChiselDSP
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60

