

Paul K. L. Yu^{*}, Kangwei Wang, Steve Pappert, Y. Fainman and C.K. Sun^{**}

Department of Electrical and Computer Engineering University of California, San Diego * Email: pyu@ucsd.edu; ** VEO, Corporation

Presentation to IEEE SSCS Joint Chapter at San Diego August 14, 2018

Sponsor acknowledgement: ONR (N00014-18-1-2027); DARPA (W911NF-16-2-0152), and Multidisciplinary University Research Initiative (N00014-13-1-0678)

Outline

Introduction: Analog/Digital Applications

External Optical Modulator for fiber-optic link and performance figure of merit Technological trend for high performance MZM modulators

Summary

Analog Optical Transmission

• The lack of a highly efficient (<1 V V_{π}=half-wave voltage), wideband (>100 GHz) optical modulator has long frustrated microwave photonics for use in military antenna applications

Digital Optical Transmission

- Commercial network capacity scaling (data center/cloud) is driving the need for 100G+ data links with minimal power consumption
- The non-existence of a highly efficient (<1 V V_{π}), wideband (>100 GHz) optical modulator now thwarts commercial optical networks as well

The Market Place

Commercial Metro and Data Center networking:

Finisar quarterly report: growth due to 40/100Gb transceivers for data center and wireless applications

Military Platform RF Networking & Signal Processing:

Small (<< \$1B) but critically important US military market to provide wideband antenna/sensor interconnects and mixed-signal networking aboard air, land and sea platforms. Modulator performance will bring dramatic change to these RF systems.

Analog RF Photonics

RF Signal Distribution – Antenna Remoting Front-End RF Signal Processing

Optical Technology Advantages

- Distance-bandwidth product improves RF performance for broadband transmission
 - Low loss (0.2 dB/km), low frequency dependence
 - Design freedom in antenna location, cable routing, receiver location

• Cabling size and weight

- Reduced cable weight, diameter, bend radius

Signal Isolation

- No cross talk between cables / EMI resistant

• Design flexibility/scalability

- Change sensor/transmitter/receiver without changing fiber
- Wavelength Division multiplexing
- Unprecedented Time-Bandwidth Product (TBWP) Processors

Main Takeaways:

High Performance RF Photonic Links *Reduces* the dependence on Front-End Electronics

E-O modulator is the key for achieving Low Noise Figure, High Dynamic Range, Wideband Photonic Links common in these applications

RF over Fiber (RFoF) Links & Signal Processing Outlook

Gradual Laser, Modulator & Detector Improvement for Analog Operation
Modulator limits RF link Noise Figure (NF) and Spurious Free Dynamic Range (SFDR)

Important Analog Link Parameters

inter-modulation distortions

Input RF Power (dBm)

Intensity Modulation/Direct Detection Analog Fiber Optic

* "IRE Standards on Methods of Measuring Noise in Linear Twoports, 1959," Proc. IRE, 48, No. 1 (Jan 1960), pp. 60-68. Courtesy of Charles Cox

Outline

Introduction: Analog/Digital Applications

External Optical Modulator for fiber-optic link and performance figure of merit

Technological trend for high performance MZM modulators Summary

External Optical Modulator Requirements

Ideal Modulator:low V_{π} (< 1 V);
high linearity;
low optical insertion loss;
high saturation power;
low polarization sensitivity;
reliable.

$$G = P_{opt}^{2} \left[\frac{\pi^{2} t_{ff}^{2} R_{in}}{V_{\pi}^{2}} \right] \cdot L_{f}^{2} \cdot \left[\mathbf{R}_{d}^{2} R_{out} \right]$$

where:

 t_{ff} = fiber-to-fiber optical insertion loss of the modulator R_{in} = the modulator drive impedance,

 $V_{\pi} = \pi/(2 \text{ dT/dV})$

 L_f = optical loss in the fiber

R_d = the photodetector responsivity

R_{out} = the detector load impedance

Optical Modulator Technology Choices

Popular Modulator Types

Y-Branch Interferrometric Mach-Zehnder Modulator (MZM)

Directional Coupler Modulator (DCM)

Ring Resonator Modulator

Electroabsorption Modulator (EAM/EML)

Material Choices

- Lithium Niobate
- III-V semiconductor
- Silicon
- Polymer
- Graphene; Nanowires
- Plasmonic

Electrode Choices

- Lumped Electrode
- Traveling Wave Electrode
- 50 Ω Terminated
- Unterminated

Performance Parameters of Interest

- Modulation Bandwidth
- Sensitivity (V_{π})
- Optical Insertion Loss
- Extinction Ratio

- Optical Bandwidth
- Power Handling
- Thermal Stability
- Form Factor

The goal is to develop low-loss E-O modulators with a performance parameter:

 $M_{PF} = BW(GHz, 3dBe)/V_{\pi}(V)$

Small-signal Equivalent circuit of EA Modulator: Effect of Modulator Photocurrent

MZM Based E-O Modulator

Popular materials for Electro-optic Modulator:

- (a) Lithium Niobate
- (b) Semiconductor
- (c) Polymer (large electro-optic coefficients)

E-O Modulator Technology Outlook

Lack of high performance wideband optical modulator

- Drive Voltage: ~2V today (sub volt is highly desired or required)
- Bandwidth: 30-40GHz today (~100GHz is desired for > 100Gb/s)
- Transmitter driver power: $P \propto V_{\pi}^2$, dominating power consumption
- $V_{\pi} \propto BW$: more bandwidth results in higher drive voltage

Performance Limitation Analysis

Exemplary MZM modulators with respect to M_{PF}

Polymer-MZM, M_{PF}=15.3

- **High** *r* : 100pm/V (*r* : *relevant EO coef.*) **Low** *r* : 8.2pm/V
- Large V_{π} : 6.2V, *l*=0.37cm, d=6.3µm
- n_{eo}: 1.7
- Moderate C_s: > 2 x 0.058 pF
- Traveling-wave for speed

Commercial (M_{PF}~15)

InP-MZM, (Dagli et al) M_{PF} =51.9

Transfer substrate

- Long device length: 0.77V, *l*=1cm, d=2μm
- n_{eo}: 3.3
- Large C.: 2 x 1.2pF
- Traveling-wave for speed

Today's Best

Laboratory (M_{PF}~50)

Outline

Introduction: Analog/Digital Applications

External Optical Modulator for fiber-optic link and performance

figure of merit

Technological trend for high performance MZM modulators

Summary

GaN Nanowire MZM Modulator

GaN Nanowires array

Motivation for using Nanowires

1. Potential for small V_{π}

$$V_{\pi} = \frac{\lambda}{n_e^3 r_{XX}} \frac{d}{l}$$

2. High second harmonic susceptibility:

GaN nano-pillars MZM design

On-going GaN Nanowire Waveguide Modulator

• GaN waveguide fabrication

• GaN Nanowire arrays waveguide

Propagation characteristics of dielectric filled GaN nano pillar arrays consistent with EM-mode simulation

By inserting a narrow slot (Prof. M. Lipson et al, Columbia U, USA) in the waveguide and apply a E-field across it, one can obtain efficient EO modulation if the slot is filled with an active EO material such as EO-polymer, provided:

(1) Good modal overlap between the high E-field region and the optical mode;

(2) The total waveguide length will not lead to excessive propagation loss.

How narrow is narrow? This has to do with the drive voltage or equivalently, V_{π} consideration. For conventional MZM with a slotted arm, there is an optimization between the drive voltage, optical insertion loss, and bandwidth. The bandwidth can be separately optimized in travelling wave electrode configuration.

Comparison of Electro-optic MZMs

Туре	Polymer	r ₃₃ (pm/V)	$V_{\pi}L$ (Vcm)	α (dB/cm)	BW (GHz)
LiNbO ₃ (Oclaro)	NA	30	37.4 (4.5V x 8.3 cm)	0.2	40
LiNbO ₃ on Si [10]	NA	32.2	7.1	NA	NA
Polymer	SEO-125	80-250 [1-4]	1.26 - 13	1.5	40-100
Hybrid Si slot + polymer	SEO-125	1230 [5]	2.82	\frown	15
Plasmonic Hybrid Si + Polymer [6]	DLD-164 [Dalton]	137 [7] 180 [6]	0.06	4000	73
Hybrid TiO ₂ slot WG + Polymer [8]	NA	144	0.8	5	Not tested
Hybrid Si slot WG + Polymer [9]	DLD-164	180	NA	NA	NA

Y. Enami et al., Appl. Phys. Lett., 91, 093507, 2007
 Y. Enami et al., AIP advances, 1, 042137, 2011
 R. Palmer et al., J-LT, 16, 2726, 2014
 Y. Enami et al., Opt. Ex., 22, 30191, 2014
 Xinyu Zhang et al., Arxiv, 2015

[6] L. Muffner et al, Nature Photon., 9, 529, 2015

[7] Chem. Mater., 26, B72-B74, 2014

[8] Feng Qiu et al., Scientific Reports, 5, 5861, 2015

[9] S. Koeber et al., Light: Sci. & Appl., 4, e255, 2015

[9] A. J. Mercante et al., Opt. Lett., 41, 867, 2016

MZM Polymer Modulator on Glass

Pre-poled high E-O coefficient polymer film

Electrical Performance

- High speed, low loss modulator design
- Handled high optical power (> 50 mW)
- Quick turnaround fabrication & service packaging
- Low cost manufacturing
- Performance scalable with improved polymers

(Courtesy of N. Peyghambarian, U. of Arizona)

Silicon Slot Polymer Selection

E-O Material Comparison

				Initial modulator designs	
Effect	Electro-Optic Effect		Free Carrier Plasma Dispersion Effect	and demonstration	
Material	LiNbO3	EO Polymers	InP, GaAs	incorporate F-O polymer	
V _p dependence	$V_{\pi}=rac{\lambda d}{n^{3}r_{ij}L\Gamma}$ Fast effect, femtoseconds for polymers.		$V_{\pi} = f(\lambda, n, L, V_{bias}, \Gamma, T, N, P)$ The effect limits the modulation speed, bandwidth, <30G.	with modest r ₃₃ (80-90 pm/V) and proven	
Refractive index (n) (@1550nm)	X-cut: 2.15 Z-cut: 2.21	1.7	3.2	environmental stability	
EO Coefficient (r ₃₃) (pm/V)	30	90	29	(Telcordia qualified M3	

Commercial SEO 120 and M3 Polymer Material Comparison

SEO 120 polymer brings 25% V_{π} reduction over M3 polymer

Developmental slot polymer (JRD1) ** shows r₃₃ = 160 pm/V, 2x that of M3 polymer

	polymery				
	SEO 120	M3 (LXM3)			
E-O coefficients, r ₃₃	123pm/V @1300nm; 100pm/V@1550nm	87-107pm/V@1300nm 74-91pm/V@1550nm			
Refractive indices. (unpoled)	n _o =1.636 @1550nm n _e =1.681 @1550nm	n _o =1.675 @1550nm n _e =1.691 @1550nm			
Optical loss :	1.0 dB/cm @1550nm	1.5 db/cm @1550nm			
Operational Temp	RT to 85⁰C	RT to 85°C			
Tg		163-170°C			
PolingE-field(V/um)		110-140			
Powerhandling		Max 100 mW			
Price	\$2000 /1 gram	\$2500/1 gram \$4200/2 gram			
Stability		25 year at 85°C			

** UW/German JRD1 work; Optics Express 25, 2627 (2017)

Inorganic E-O Material Candidates

2.405

2.4

1.00E-01

0.00E+00

2.37

2.375

2.38

2.385

---- Left Power ----- Right Power

2.39

2.395

d=100nm, n180=.0075 r=100pm/v, n=2.4

Results from Professor Shaya Fainman's group

Summary

In this talk, we have

- presented the roles of optical modulators in analog and digital applications
- introduced a performance figure of merit, M_{ph}, for the optical modulators
- surveyed the commercial and laboratory modulators
- examined some MZM structures and nonlinear materials
- discussed the nanopillar and nanoslot MZMs and pointed out the

advancement required to achieve large $\rm M_{\rm ph}$

Acknowledgment:

- S. Dayeh and his students
- S. Fainman's students
- Z.W. Liu and his students
- N. Peyghambarian and his colleagues and students at U. of Arizona
- C. Cox and his colleagues at Photonic Systems Inc.