

WiFi for IoT: RF Systems & Architecture

E. Youssoufian September 18, 2018

About the Author: Edward Youssoufian

Atmel

- Currently: Sr. Director at NXP, Responsible for RF and Analog development within the Secure Transactions and Identification Business Line
- *Sr. Director, Engineering at Atmel*, where he led development of multiple WiFi-, Bluetooth-, and Zigbee-enabled Wireless MCUs for IoT, including (at the time) the world's smallest and lowest power production BLE devices, BTLC1000 and SAMB11.
- Founder and Vice President of Engineering at Newport Media, Inc., a fabless semiconductor company acquired by Atmel for \$140M in 2014. At Newport, he oversaw 15 Mass production tapeouts in 7 years, resulting in cumulative shipments of over 350 Million wireless devices

- Principal Engineer at Skyworks Solutions, where he worked on Cellular Transceivers for AMPs, CDMA, GSM, and WCDMA; primarily in Frequency Synthesizer and Transmitters.
- **BSEE and BSNE,** both from UC Berkeley. MSEE from UCLA.
- 21 issued U.S. patents

What is WiFi? (or, Why Wifi Is the way it is)

- WiFi was developed circa 2000, when the main use cases were email, web surfing, IM, etc. Target devices were laptops.
 - Occasional packets of data
 - Few or 10s of devices
 - Robustness was main concern, throughput was next concern.
 - 1W of power considered small.
- With time, enhancements have been made to support new, bandwidth hungry use cases (ie Video Streaming) and devices (Smartphones)
 - Introduction of 40, 80, and 160MHz channels (802.11n/ac)
 - MIMO: 2x2, 4x4, 8x8....never ending.
 - 256QAM, 1024 QAM
- BUT:
 - Network Still Collapses as more devices associate to an AP
 - Power in the 100s of mW is still Acceptable

Wi

What is Internet of Things?

- Internet did not make sense until a large numbers of PCs had proliferated ("2nd Tectonic Shift")
 - Introduction of Cellphones/mobile computing (third shift) increased connections to several Billion
- The next shift, IoT, is expected (required?) to connect to 100s of Billions or Trillions of devices.
- How can 7 billion people benefit from 1 trillion connected devices?
- Answer: THINGS. Especially small things.
 - 1 Trillion (or even 100 Billion) cellphone-like devices are not economically feasible and not beneficial.
 - But, 1 Trillion connected lights, doors, windows, appliances etc. could be another story.
- This is the realm of MCUs: low power, low cost devices.

BUT: Huge number of low power nodes is NOT what WiFi was made for!

Source: Jeffries, NXP

Why WiFi for IoT?

- Despite these challenges, there is still strong rationale to using WiFi for IoT Devices.
 - WiFi Access points are widely deployed
 - Zigbee and LPWAN techniques require new infrastructure.
 - Everyone already has a WiFi access point.
 - WiFi offers a direct, primary connection to the internet.
 - Other technologies, like BLE, mainly link to a (nearby) cell phone.
 - Cannot reach such devices when you are away.
- With clever engineering, WiFi devices can overcome both the limitations of the 802.11 standards and challenges of IoT Devices.

Example Device

Amazon Dash Button

- Button Programmed with WiFi Router Information via app on Smartphone, then goes to Deep Sleep.
- When pressed, device wakes up, connects to AP, and sends request to Amazon Servers for product to be delivered.
- Extremely low activity (once per day/week)
- Extremely simple/cost sensitive

Two Revisions of product:

- 1st Revision introduced Early 2015
- 2nd Revision Introduce Mid 2016
- -> Investigate and compare both versions

First Look Inside – Original Version

- Product area and volume dominated by battery
 - Smaller batteries cannot deliver peak currents required for WiFi Transmitters
- Since only 1 AAA can fit, additional Power management circuitry is required.
 - AAA battery is 1.5V and WiFi PA requires 3V
- Expensive Lithium AAA Battery is used
- Battery has enormous impact on Device

Comparison: 1st and 2nd (Current) Version

Original Version

Current Version

- One significant improvement in new version of button -- New Version uses commodity
 AAA battery 3x cost savings
- What is needed to make this change possible?

Comparison: Lithium vs. Alkaline AAA battery

- Main Difference between Lithium and Alkaline batteries is capacity at high discharge rates
 - Note: Stepping up voltage via Boost Converter more than doubles device current, and battery discharge rate
- New revision must consume 2-3x less power or have 2-3x lower peak currents

PCB Bottom

11

- 1. WiFi SoC and MCU Changed on Second version
- 2. BLE Added to Second Version
- 3. Both versions have plenty of unused board space. No 5GHz.
- 4. Each Radio in 2nd Version has it's own antenna.

РСВ Тор

Observations

- 1. Boost Converter present, as expected. No Change between versions.
- 2. Both Devices have a Microphone (!?)
 - Strange...button does not have voice recognition capability.

Microphone, BLE, and Provisioning

- The Microphone and BLE both serve the same purpose: Provisioning
 - Router specifics (i.e. network name and password) must be entered into the Button.
- Button itself has no keyboard or screen, so a smartphone is used.
- In the First Version of Device, smartphone speaker sent provisioning info via ultrasound signals to the Button Microphone (!)
 - Unreliable, expensive, and requires un-provisioned button to be "always listening"

• Second Version of Device uses BLE

- Added cost of BLE is very small.
- Much simpler to do the provisioning
- Microphone was kept in second version for backward compatibility
 - Eventually (currently?) removed when most phones have BLE.

Power Consumption Comparison

Source: https://mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/

- Peak Power Consumption of both devices is comparable
 - Current verson actually consumes slightly higher active current.
- However, *Energy* consumed by Current version is 3x less.
 - This enables use of alkaline battery, and explains the switch from WICED platform to ATWINC1500B

Concluding Remarks

- Battery and Power Management are key drivers of overall device cost and lifetime.
- IoT WiFi Applications often benefit substantially from BLE
- Optimization of Transaction *Energy* matters more than raw device power consumption.

WiFi Power Modes for IoT

Power Modes

- WiFi has provisions for power save modes.
 - Beacon Monitoring: Commonly used today; allows full BW communication.
 - Use of PS Poll packets: Less common; allows ~10x less power consumption, at expense of much longer latency and throughput
 - Shutoff and Reconnect: Mainly for Event-Driven devices (i.e. button)

Beacon Monitoring Mode: High Activity Devices

- Normal Operation when device is a WiFi STA connected to AP.
- After associating to AP, devices goes to sleep until next Beacon
- Can Receive or Transmit data any time via TIM/DTIM
 - As receive or transmit data increases, current increases
- If WiFi SoC is well designed: Receive Power consumptions Dominates
 - For IoT focused devices (low data rates) and low lithography CMOS (40nm and below), RF
 Power consumption is often significantly more than digital.
- If WiFi SoC is poorly designed: sleep current (in between beacons) dominates.

Beacon Monitoring: What not to do, 1

- Overall Beacon Monitor Current is 22.5 mA!
- 90% is standby power.

Beacon Monitoring: What not to do, 2

- Here standby power is much better, but overall Beacon Monitoring Current is still 8mA.
- In this case, the Active *time* is longer than necessary

Beacon Monitoring Mode: Optimized for IoT

- Receiver dominates power consumption
- Power in between beacons is minimal
- Average of 3ms @ 80mA every 300ms ~1mA average current
 - Increases to 3mA for 100ms Beacons
- However, even this improvement only enables 700 hour (=1 month) lifetime from 2x AAA batteries
- Traditional Beacon monitoring mode mainly applicable for plugged-in IoT applications (e.g. Thermostat) or Large Li-Ion batteries.

Use of Beacon Monitoring in IoT Application

- Put IoT Device in Beacon Monitoring mode.
- Thermostat can be set any time; Temperature can be read any time (~100's of ms latency)

PS Poll: Moderate Activity Devices

- For moderate activity devices, it is possible to reduce power further
- A special packet (Null packet with PS Poll bit set to 1) is sent to AP once every 60s.
 - This keeps the device associated to the AP
- After sending, device goes to sleep and does not listen to beacons.
- Device does not receive or Transmit data until it sends another packet to the AP. Then, device will temporarily go to beacon monitoring mode.
- Benefit: No need to re-associate to the AP, no need to resume TCP & SSL connections when communication is needed.

PS Poll: Moderate Activity Devices

- Dominant current: Oscillators, Bandgap/LDOs, Memory Leakage
- Power can be reduced to ~100uA
- Extends life to ~10 months for 2 AAA batteries.
 - Still not good enough for many applications

Use of PS Poll in IoT Application

- Periodically Upload Data from IoT device to Server
- Data only flows from IoT Device to Server, not the other way around.

Shut Off and Re-Connect: Low Activity Devices

- For low activity and especially event-driven devices, it is possible to reduce power further
- Simply re-connect to AP when data needs to be transmitted.
- Here, power consumption is mainly dominated by energy used during wakeup and re-connection to AP.
- Data rates must be very low for this to make sense (eg Dash Button, doorbell, fire alarm,)

Shut OFF and Reconnect

- Time for AP Association, Authentication, and DHCP are Critical
- Power consumption carefully planned during each phase of wakeup and Association.
- Average of 80ms @ 80mA for Secure AP
- 2 AAA batteries last <u>7 years</u> for one event every 20 minutes.

802.11 Overview & System Analysis

Strategy

- System Analysis requires a combination of Standard compliance, Regulatory compliance, and (often most importantly) Technical Marketing.
 - Competitive offering must generally exceed the spec.
 - Knowing which parameters matter most is critical.
- In what follows we go through each of these in turn to determine final product requirements.

General Signal Properties

- 802.11 a/g/n are OFDM based.
 - Center Subcarrier is always null alleviates DC offset removal in RX chain
 - 312.5kHz Subcarriers.
 - 64 bin IFFT creates signal. 52 subcarriers used in 802.11a/g; 56 used in 802.11n
- OFDM has very high Peak to Average of ~10dB.
 - Makes PA design significantly more challenging.

52 Carriers (+ Null) in 802.11g=~16.6MHz

Data Rates

- Variety of Data rates are supported.
 - Starting from very robust, BPSK rate ¹/₂ to very high throughput 64QAMR5/6
 - Only one change in modulation between 802.11a/g and 802.11n
 - 802.11g BPSK3/4 mode replaced in 802.11n 64QAM5/6 mode
- For IoT, lower data rates are more suitable.
 - In 802.11g, higher data rate modes were optional.
 - But starting in 802.11n devices must support all modes

802.11a/g Data Rates

802.11n 1x1 Data Rates

Table 18-4—Modulation-dependent parameters

Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)	Data rate (Mb/s) (10 MHz channel spacing)
BPSK	1/2	1	48	24	6	3
BPSK	3/4	1	48	36	9	4.5
QPSK	1/2	2	96	48	12	6
QPSK	3/4	2	96	72	18	9
16-QAM	1/2	4	192	96	24	12
16-QAM	3/4	4	192	144	36	18
64-QAM	2/3	6	288	192	48	24
64-QAM	3/4	6	288	216	54	27

Table 20-30—MCS parameters for mandatory 20 MHz, N_{SS} = 1, N_{ES} = 1

								Data ra	nte (Mb/s)
MCS Index	Modulation	R	N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI (see NOTE)
0	BPSK	1/2	1	52	4	52	26	6.5	7.2
1	QPSK	1/2	2	52	4	104	52	13.0	14.4
2	QPSK	3/4	2	52	4	104	78	19.5	21.7
3	16-QAM	1/2	4	52	4	208	104	26.0	28.9
4	16-QAM	3/4	4	52	4	208	156	39.0	43.3
5	64-QAM	2/3	6	52	4	312	208	52.0	57.8
6	64-QAM	3/4	6	52	4	312	234	58.5	65.0
7	64-QAM	5/6	6	52	4	312	260	65.0	72.2

802.11a/b/g/n Standard Comparison: RX

	.11a	.11g	.11n	.11b
Frequency Band	5GHz ISM	2.4GHz ISM	2.4 & 5 GHz ISM	2.4GHz ISM
Sensitivity		Identical to .11a		-76dBm
Adjacent Channel	See Next	Identical to .11a (25MHz spacing)	Essentially Identical to:	35dB
Alternate Channel	Slide	No Requirement	.11a (5GHz) .11g (2.4GHz)	No Requirement
Maximum input	-30dBm	-20dBm		-10dBm

- .11a and .11g identical except for Alternate channel requirement and max signal level
- .11n is equivalent to .11a and g, with different bitrates/more subcarriers
- .11b is mostly easier and naturally covered by .11a/g/n. Will not discuss further.

802.11a/g: Key Receiver Specifications

17.3.10.1 Receiver minimum input sensitivity

The packet error rate (PER) shall be less than 10% at a PSDU length of 1000 octets for rate-dependent input levels shall be the numbers listed in Table 17-13 or less. The minimum input levels are measured at the antenna connector (noise factor of 10 dB and 5 dB implementation margins are assumed).

Data Rate (Mbps)	Modulation	SNRMIN* (dB)	Sensitivity
6	BPSK 1/2	4	-82
9	BPSK 3/4	5	-81
12	QPSK 1/2	7	-79
18	QPSK 3/4	9	-77
24	16QAM 1/2	13	-74
36	16QAM 3/4	16	-70
48	64QAM 2/3	20.5	-66
54	64QAM 3/4	22	-65

*SNRMIN values are from simulation (1dB implementation loss) They are not a part of the 802.11 standard.

- Standard Sensitivity based on 10dB Noise Figure and 5dB Implementation loss
- Not appropriate for product definition
- Competitive Devices require ~4 dB NF and ~1dB Implementation loss-> 10dB lower sensitivity than standard.

17.3.10.2 Adjacent channel rejection

The adjacent channel rejection shall be measured by setting the desired signal's strength 3 dB above the ratedependent sensitivity specified in Table 17-13 and raising the power of the interfering signal until 10% PER is caused for a PSDU length of 1000 octets. The power difference between the interfering and the desired channel is the corresponding adjacent channel rejection. The interfering signal in the adjacent channel shall be a conformant OFDM signal, unsynchronized with the signal in the channel under test. For a conformant OFDM PHY the corresponding rejection shall be no less than specified in Table 17-13.

Data Rate (Mbps)	Modulation	SNRMIN* (dB)	Adjacent Protection Ratio	Alternate Protection Ratio	SNR+PR
6	BPSK 1/2	4	16	32	20
9	BPSK 3/4	5	15	31	20
12	QPSK 1/2	7	13	29	20
18	QPSK 3/4	9	11	27	20
24	16QAM 1/2	13	8	24	21
36	16QAM 3/4	16	4	20	20
48	64QAM 2/3	20.5	0	16	20.5
54	64QAM 3/4	22	-1	15	21

*SNRMIN values are from simulation (1dB implementation loss)

- Adjacent channel requirements are defined such that Receiver dynamic range (SNR + Protection ratio) is a constant ~21dB
- Alternate channel Protection ratio is always 16dB higher than Adjacent channel.
- Target 6dB margin to these specs. Just need to meet spec with margin.

802.11a/b/g/n Standard Comparison: TX

	.11a	.11g	.11n	.11b
Frequency Band	5GHz ISM	2.4GHz ISM	2.4 & 5 GHz ISM	2.4GHz ISM
TX Frequency Accuracy	+/-20ppm	+/-25ppm	Identical to: .11a (5GHz) .11g (2.4GHz)	Identical to .11g
EVM	Table 17-12	Identical to .11a	Essentially Identical to .11a	<35%
Spectral Mask	Next Slide	Identical to .11a	Next Slide	Next Slide
LO Feedthrough	-15dBc	Identical to .11a	-20dBc	Identical to .11a

802.11a/g

Table 17-12—Allowed relative constellation error versus data rate

Relative constellation error (dB)	Modulation	Coding rate (R)
-5	BPSK	1/2
-8	BPSK	3/4
-10	QPSK	1/2
-13	QPSK	3/4
-16	16-QAM	1/2
-19	16-QAM	3/4
-22	64-QAM	2/3
-25	64-QAM	3/4

- .11b requirements in general subset of .11a/g/n
- Target LO feedthrough spec of -20dBc set by .11n
- Target EVM requirements of 802.11n (has 1 mode more difficult than .11n)
- Main Challenge is transmitting high enough Output power while meeting EVM (high data rates) or ACPR (low data rates)

Spectral Masks

- .11n requirements 5dB more difficult beyond 30MHz.
- Adopt this as the target, generally not a major issue.

- FCC Requirements mainly revolve around -41dBm/MHz noise floor
 - These requirements mainly impact the TX
 - Below this level, FCC looks at it as if nothing is there.
- Main Challenge:
 - Harmonics. For +20dBm output 20MHz signal, spec translates to 48dBc HD_N
 - Channels at the edge of the ISM band. Here ACPR is limiting. Generally back off fundamental for these channels.
- For IoT, pre-certified modules dramatically simplify customer's life.

Emission Type	FCC Limit	Comment
Fundamental Power	+30dBm	Assumes <6dBi antenna
Harmonic Power	-41dBm/MHz	All Harmonics
Restricted Bands	-41dBm/MHz	Includes Edge of 2.4GHz ISM band (2310-2390 and 2483.5-2500)

Coexistence Requirements

- WiFi Radio must coexist with other wireless standards.
- These "Coexistence" requirements are often the most difficult, but vary greatly from product to product.
- Example:
 - For Integration in a Cell Phone, WiFi radio must de-sense less than 1dB for -15dBm Cellular blocker.
 - This Translates to +72dBm cascaded IIP₂
- Many WiFi devices were designed with *Cellular* requirements in mind.
- IoT devices do not have such requirements.

Receiver Coexistence Requirements

- Analysis below is for IoT device in presence of a cell phone.
 - Similar analysis can be done for various other scenarios.
 - Below is a representative example.
- Target is to be able to handle such interferers with <=3dB de-sense

Transmitter Coexistence Requirements

- In TX mode, opposite concern arise Emissions of WiFi device desensitizing Cell phone
- Target is for WiFi emmissions to cause <=3dB de-sense to other receivers

Summary of Cascaded Receiver Requirements

Spec	Comment	
10dB Margin to 802.11a	e.g75dBm for 64QAMR¾ Implies 4dB NF.	
-10dBm	Set by .11b. Little impact on cost/power.	
-21dBm	Set by coexistence with cellular blockers	
6dB margin to 802.11a	e.g. +5dB Protection ratio for 64QAMR ³ / ₄	
6dB margin to 802.11a	e.g. +21dB Protection ratio for 64QAMR ³ / ₄ Only required if supporting 5GHZ ISM band	
Minimize		D
Minimize		
	Spec 10dB Margin to 802.11a -10dBm -21dBm 6dB margin to 802.11a 6dB margin to 802.11a Minimize	SpecComment10dB Margin to 802.11ae.g75dBm for 64QAMR¾ Implies 4dB NF10dBmSet by .11b. Little impact on cost/power21dBmSet by coexistence with cellular blockers6dB margin to 802.11ae.g. +5dB Protection ratio for 64QAMR¾ Only required if supporting 5GHZ ISM bandMinimizeMinimize

Cascaded Transmitter Requirements

	Spec	Comment
TX Output Power	+18dBm for 64QAMR¾	Lower data rates expected to have higher output power. Based on competitive analysis.
EVM	3dB Margin to 802.11n at P _{MAX}	e.g31dB evm for 64QAMR¾
ACPR	3dB Margin to 802.11n at P _{MAX}	Typically matters at lower data rates
LO Feedthrough	-20dBc	Set by .11n
Spectral Emissions	<-121dBm/Hz	In all 3GPP Cellular bands. Includes DAC alias.
Harmonic Distortion	<-48dBc	Per FCC
Frequency Accuracy	+/-20ppm	Can be relaxed in 2.4GHz only is used.
Power Consumption	Minimize	
Cost	Minimize	

Translation

- Given the Previous high-level, modulated signal specifications, we can derive basic noise, linearity, filtering, and dynamic range specs.
- For Receiver:
 - Noise Figure
 - IIP₂
 - Anti-aliasing
 - ADC dynamic range
- For Transmitter:
 - I/Q imbalance
 - Integrated Phase Noise
 - TX OIP3
 - DAC Anti-Aliasing

Receiver Noise Figure

 Required Noise Figure is calculated from the Target sensitivity with the Demodulator SNR_{MIN}:

P_{SENS}=-174dBm/Hz + 10log₁₀[BW]+NF+SNR_{MIN}

 For 64QAM rate ¾, target sensitivity is -75dBm, and demod SNR_{MIN} is 22dB. Required NF is then

-75dBm+174dBm/Hz - 10log₁₀[20M]-22dB=4dB

In practice, the achievable NF (often 3dB) determines sensitivity, not vice versa...

Out-of-Band Blocker

- Out-of-band Blocker determines both IIP₂ and Far-out Phase noise spec
 - Evenly allocate between the two impairments such that together they give 3dB de-sense
 - Thermal Noise in 20MHz (w/3dB NF)= -98dBm ٠
 - Total Noise allowed with Cellular Blocker present: -95dBm
 - => Target IM₂ level: -101dBm
 - =>Target Reciprocal Mixing power: -101dBm

-21 dBm

Cellular Blocker

Out-of-Band Blocker: IIP₂

- For IIP₂ analysis, treat blocker as two tones of 3dB less power.
- Then Power of IM2 product can be calculated using:

Cellular Blocker

Out-of-Band Blocker: Reciprocal Mixing

- Phase noise is calculated by first converting noise power to noise density: -101dBm-73dBHz=-174dBm/Hz.
- Noise density is then referenced to blocker power to get dBc/Hz:
- -174dBm/Hz + 21dBm=-**153dBc/Hz**
- This spec should be used at 100MHz offset and beyond.

Cellular Blocker

ADC Anti-Aliasing

- Required Anti-Aliasing is equal to Protection Ratio+SNR+Margin
 - In this case, we use the Alternate channel Protection Ratio. •
 - Target 6dB margin on protection ratio, and additional 6 to leave room for other impairments.
- Wifi protection ratio decreases as required signal SNR increases.
- Sum is roughly constant: ~22dB for Adjacent channel and ~38dB for Alternate Channel.
 - Eg: SNR_{MIN} for 64QAMr³/₄ is 23dB, Adjacent Protection ratio is -1dB

ADC Fs

ADC Dynamic Range

- Minimum ADC dynamic range is equal to SNR + Peak-Average + Margin.
 - This assumes ideal AGC and all blockers removed.
- Since protection ratios for high data rates are low (-1dB per standard; +5dB target), we can slightly increase required dynamic range and push channel select filtering to digital.
- Then ADC dynamic range required is:
 - SNR + P-A + Protection ratio + margin=23dB+10+6+10=49dB
 - Note: must ensure that filtering attenuates alternate blockers to similar protection ratio.
 - As alternate blockers are 16dB higher, need at least 16dB of Alternate channel filtering.
 - If alternate filtering falls short, can increase ADC dynamic range to compensate.

TX EVM

- Integrated Phase noise, I/Q imbalance, and non-linearity all rms sum to give TX EVM.
 - Allow non-linearity to dominate the EVM budget, as this allows for highest PA efficiency.
- Target is for 3dB margin to standard at maximum Pout (+18dBm for high data rates)
- Budget must then sum to -28dB for 64QAMR³/₄

	Budget	Comment
I/Q imbalance	-40dB	Achievable without calibration
PLL Phase Noise	-37dBc	Must meet this with PA Pulling of VCO
Non-Linearity (OIM3)	-29dB	Should be dominated by PA. Note this is in-band non-linearity (harder)
Total	-28dB	In-line with Target

Table 17-12—Allowed relative constellation error versus data rate

Relative constellation error (dB)	Modulation	Coding rate (R)
-5	BPSK	1/2
-8	BPSK	3/4
-10	QPSK	1/2
-13	QPSK	3/4
-16	16-QAM	1/2
-19	16-QAM	3/4
-22	64-QAM	2/3
-25	64-QAM	3/4

TX ACPR

- Two tone test can approximate ACPR farily accurately
- With this assumption, TX ACPR directly translates to OIP_3 : $OIP_3=P_{out}+\Delta P/2$
- For Pout=+20dBm (=17dBm each tone)and Δ P=27dBc (3dB margin) we have
 - OIP3=+30.5dBm
- Note this is easier than the linearity required for EVM at high data rates, but more difficult for low data rates.

Figure 20-17—Transmit spectral mask for 20 MHz transmission

DAC Anti-Aliasing

- TX Emissions requirement translates to a DAC Anti-Aliasing Requirement:
 - TX Emissions spec of -127dBm/Hz translates to -54dBm in 20MHz.
 - Assuming +20dBm TX output signal, this implies 74dBc DAC Anti-Aliasing.
 - With Margin, we need 80dBc
- However, can relax this with frequency planning.
- If Alias is placed at frequency that does not interfere with cellular, spec relaxes to -28dBm in 20MHz (FCC)

Cellular Band

Transceiver Architecture

Architecture

- Receive 2.4-2.5GHz
- Single ended RX input, differential Transmitter
- Integrated PA with +26dBm saturated output power
- Integrated T/R Switch
 - By carefully managing PA on /LNA off interaction, we can integrate T/R Switch
 - Elimination of T/R switch allows us to degrade NF and output power by 1dB

Receiver Overview

- 20MHz signal bandwidths RF input frequencies from 2.4-2.5GHz
- Single-Ended LNA followed by passive mixer
- Self Contained RF AGC loop followed by Digital AGC
- Quadrature LO Generated by ÷2 of PLL output
- Filtering, DC offset correction, and I/Q imbalance correction in digital domain.

	Spec	Target
PLL LO	NF	3dB (+1dB T/R SW)
	IIP2	+53dBm
	LO Spot Phase Noise	-153dBc/Hz @ 100MHz offset
	ADC DR	49dB
AGC	AA Filtering	50dB

Single Ended vs. Differential LNAs

- For IoT, Single ended LNAs have major advantages with respect to differential LNAs.
 - 2x Lower Power for a given Noise figure
 - Less pins
 - No need for external baluns
- Main advantage is that Differential LNA enables Differential *mixer*
 - Differential Mixer has significantly improved IIP₂
 - IIP₂ specs are challenging if WiFi needs to Coexist with Cellular Signals.
 - WiFi Receiver must only de-sense 1dB when subjected to a -20dBm Cellular blocker at ~100MHz offset
 - This translates to +65dBm cascaded IIP₂;
- For IoT Devices, Cellular Coexistence is not typically required.
 - Level of Cellular blockers is significantly lower.
- As a result, single ended LNA is more suited to IoT WiFi.

LNA + RX Mixer + BB AMP Specifications

- Quasi-Differential LNA-Mixer. Upconverted Impedance to give minimum 12dB filtering of OOB blockers.
- Two sets of Differential Quadrature outputs, combined by ADC gm
- Wideband match required due to integration of T/R switch
- Power down mode such that PA swing does not damage LNA transistors.

Parameter	Spec
Max Gain	15dB
Gain Step Size	3dB
IIP3 @ Max gain	-10dBm
IIP2@ Max Gain	+53dBm
OOB filtering @ LNA output	>12dB
Power Down current	<10uA
RX turn-on Time	3ms

ADC and 1st Decimation

- Differential 8 bit 160MHz SAR ADC
- 2 Passive poles ahead of ADC at ~15MHz for blocker filtering/anti-aliasing
- Final CIC can be 2nd order for 20MHz signals.

	Parameter	Spec
	# Physical bits	8 bits
	Sampling	160MS/s
	ENOB in 20MHz	9 bits
	Nominal BW	Two poles @ 15MHz
	OIM3(adjacent)	+50dBc
	Total Current	4mA
Ρ	ower Down Current	<1uA

Channel Selection Filter

- 802.11g Single-side BW is 8.3MHz
- 802.11n SSBW is 8.935MHz (worst Case)
- Spec Passband at 9MHz
- Conservative Stop band: 10MHz
 - Allows Narrowband blocker like BT right at WiFi Band edge)
 - Minimum Stop band: 11MHz (assumes adjacent channel .11n blocker).
- Stop band attenuation: For 64QAM we spec 30dB SNR and 20dB protection ratio, giving 50dB stopband attenuation.
- *Ripple: +/-0.5dB*
- Channel Selection Performed in Digital Domain. Prefer IIR Implementation to save area and power.

Transmitter Architecture

- Direct Conversion Transmit Architecture
- Gain control in PA and DAGC
- 8 or 16x Oversampled Nyquist DAC.
- Differential PA is critical for low-cost packages
- PA Digital pre-distortion.

Parameter	Spec
PA Gain	24dB
Gain Step Size	3dB
Psat @ Max Gain	+26dBm
EVM@+18dBm	-28dB
ACPR @+18dBm	-28dB
Output OOB noise @+18dBm	-123dBm/Hz
I/Q phase balance	<0.2º
TX 10-90 turn-on Time	2ms

Impact Of DPD: Single Tone

Impact of DPD: Modulated signals

DPD Disabled					DPD Enabled								
Bursts: 3	Min	Mean	Limit	Max	Limit	Unit	Bursts: 3	Min	Mean	Limit	Мах	Limit	Unit
EVM All Carr.	5.39 - 25.37	5.45 - 25.27	5.62 - 25.00	5.52 - 25.16	5.62 - 25.00	% dB	EVM All Carr.	5.20 - 25.68	5.28 - 25.54	5.62 - 25.00	5.34 - 25.44	5.62 - 25.00	% dB
EVM Data Carr.	5.48 - 25.22	5.54 - 25.13	5.62 - 25.00	5.61 - 25.02	5.62 - 25.00	% dB	EVM Data Carr.	5.29 - 25.53	5.38 - 25.39	5.62 - 25.00	5.43 - 25.30	5.62 - 25.00	% dB
EVM Pilot Carr.	4.11 - 27.73	4.20 - 27.52	39.81 - 8.00	4.30 - 27.32	39.81 - 8.00	% dB	EVM Pilot Carr.	3.83 - 28.34	4.00 - 27.95	39.81 - 8.00	4.17 - 27.60	39.81 - 8.00	% dB
IQ Offset Gain Imbalance	- 21.15	- 21.05	- 15.00	- 21.00	- 15.00	dB %	IQ Offset Gain Imbalance	- 26.20 0.29	- 26.12	- 15.00	- 26.06	- 15.00	dB %
Gain imbalance	0.03	0.03		0.04		dB		0.03	0.03		0.04		dB
Quadrature Err	- 0.72	- 0.69		- 0.68		0	Quadrature Err	- 1.02	- 0.98		- 0.94		0
Freq. Err Symb Clock Err	- 16632.17 - 3.38	- 16640.37 - 4.33	± 60300 ± 25	- 16649.52 - 5.03	± 60300 ± 25	Hz ppm	Freq. Err Symb Clock Err	- 16319.89 - 0.73	- 16324.68 - 1.47	± 60300 ± 25	- 16331.73 - 2.33	± 60300 ± 25	Hz ppm
Burst Power Crest Factor	14.70 7 40	14.71 7 41		14.71 7 43		dBm dB	Burst Power Crest Factor	18.64 7.27	18.64 7.31		18.65 7.34		dBm dB
		+14.7d	Bm						+18.6d	Bm		Â	

1

 \rightarrow DPD enhances EVM Compliant Output power by 4dB

CONFIDENTIAL

DAC and Digital Interface

- Differential 12-bit Current steering DAC
- 2 Passive poles at DAC output at 15MHz for anti-aliasing/OOB noise filtering
 - Much Less critical in IoT! No cellular coexistence to worry about.
- Last Stage of Interpolation can be performed by custom logic in legacy CMOS (eg 65nm)
 - Can/Should be done entirely on Digital side in 28nm...
 - Final CIC can be 2nd order for 20MHz signals. 1st AA filter comes free from ZOH

Parameter	Spec
# bits	12
Sampling	480-500GS/s
Nominal BW	Two poles @ 15MHz
OIM ₃ @500mVpp se	50dB
Output Noise @ 200MHz	<2nV/rt(Hz)
Anti-Aliasing	80dB
Max o/p	>700mVppse
Total Current	<20mA
Power Down Current	<10uA

LO & Clock PLL Architecture

- Synthesize 4x the required LO to mitigate VCO pulling by PA
 - Required LO is 2.412-2.480. With margin we design for 2.4-2.5

Looking Forward

The Future

• 802.11ah is the Future of IoT WiFi

- Standard is Optimized for IoT devices
- Uses 900MHz ISM band for ~3x range
- MAC enhancements to allow huge number of low duty cycle devices
- UPDATE: 802.11ax is the Future of WiFi
 - 802.11 working group cleverly included enhancements for IoT in a mainstream (read: Cell Phone) amendment

BACKUP

Aside: Coin Cell Battery

- Although Coin cell is naturally 3V it's capacity under high discharge and internal resistance make it unsuitable for most WiFi chips/applications.
 - Even 10mA loads cause a significant drop across battery IR

ENERGIZER CR2032

Specifications

lassification:	"Lithium Coin"
Chemical System:	Lithium / Manganese Dioxide (Li/MnO ₂)
Designation:	ANSI / NEDA-5004LC, IEC-CR2032
Iominal Voltage:	3.0 Volts
ypical Capacity:	240 mAh (to 2.0 volts)
	(Rated at 15K ohms at 21°C)
ypical Weight:	3.0 grams (0.10 oz.)
ypical Volume:	1.0 cubic centimeters (0.06 cubic inch)
ypical IR:	10,000 - 40,000 mΩ
lax Rev Charge:	1 microampere
nergy Density:	198 milliwatt hr/g, 653 milliwatt hr/cc
ypical Li Content:	0.109 grams (0.0038 oz.)
JL Listed:	MH29980
Operating Temp:	-30C to 60C
Self Discharge:	~1% / year