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Breast Cancer Tissues

» Photograph of breast cancer tissue « Digital photomicrograph image of
excised from patient malignant tumor tissue with

* Measurement carried out with open- hematoxylin-eosin staining
ended coaxial probe (2.2mm outer « Tumor tissue is not fully occupied by
diameter) on tumor region of ill- the cancer cells (gray) but cancer
defined and grayish-white on the cut cells are distributed locally in the
surface stroma cells (red)

T. Sugitani et al., Applied Physics Letters 104, 2014, pp. 253702-1-5.




Measurement of Permittivity of
Excised Tumor Tissue

Coaxial cable

Vector Network Analyzer
Agilent TechnologiesENAE5071C

Open-ended
coaxial probe

- Tissue sample

/ permittivity: r

* Dielectric properties of breast tissues measured at 0.5-20 GHz using Agilent E5071C vector network
analyzer (VNA) and open-ended coaxial probe of Agilent 85070 dielectric probe kit

* Probe aperture outer diameter = 2.2mm, length = 200mm

* VNA calibrated at reference plane of coaxial probe tip using calibration standards
(e.g., open circuit in air, short circuit with a metal, and load in liquids)

T. Sugitani et al., Applied Physics Letters 104, 2014, pp. 253702-1-5. 4



Dielectric Properties of Breast Cancer

« Permittivity and conductivity of breast cancer tissues higher than those of normal breast tissues in
microwave frequency band
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« Statistical uncertainty observed in dielectric constant and conductivity between cancer and
glandular tissues, as well as between glandular and adipose tissues

» Therefore difficult to statistically distinguish cancer from normal tissues

T. Sugitani et al., Applied Physics Letters 104, 2014, pp. 253702-1-5. >



Dielectric Properties of Breast Cancer of
@ Individual Patients
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Dielectric Model of Breast Tissues
( Modified Cole-Cole Model )

* Model measurement data with modified Cole-Cole model to understand the characteristics
quantitatively
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Model Parameters of Breast Tissues

Modified Cole-Cole Model o o o o -
e(o)-je (@) =6, +— 5+ 2
1+(](02'Q) I+ jor, we,

Cancer, stroma and adipose tissues can be classified by model parameters of epsilon at medium
frequency and conductivity.

m

7.94 4. 26
40.3 12.6
0.23 0.164
13.7 18.29
0.074 0.0617
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T. Sugitani et al., Applied Physics Letters 107, 019902 (2015). 8



Microwave Imaging Systems under Development

e -

Radar-based microwave imaging sy's't“em (Bristol University, UK)
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3D tomography microwave imaging system (Dartmouth University, USA)

A. Modiri et al., Medical Physics 44(12), pp. 3446-458, 2017. 9



Principle of Radar-based Detection
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Breast Cancer Detection System Using

CMOS Integrat
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Block Diagram of Breast Cancer Detection
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Prototype of Breast Cancer Detector
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GMP Generator and Transmitter Module

DELAY AL —
CLK® 2 b I Output1] |
oATAm NAND % o 0.10 I Output?2
AND S 005 N ]
DELAY __|Down Pulse T>> |
} jcz; Generator || BUFFER—® OP 0-00; |
— NAND 2 005 |
DATAD g -0. x
J% OR __|Down Pulse 03 010 | ]
Generator | [ [BUFFER—® OM ]
. -0.15 : : ' '
CLK® NOR féé AND 10 12 14 16 18 20
I gp Pulse | Time (ns)
enerator o 1.0 : : . . .
DELAY 3 S
d 3 utpu ]
NOR §§:§ OR U5 Puse = 0.8 /\/ Output2
Generator [ g 0.6 |
o] I
3
N 041
© ‘ \
S
5 02 \
= (b)
0.0

0 5 10 15 20 25 30
Frequency (GHz)

Pulse Width: 170ps
Center Frequency: 6GHz

14

H. Song et al., IEEE Access, (Volume:3 ) Page(s):2111 — 2121, 29 Oct., 2015



GMP Generator with Wave Correction
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Principle of Equivalent-Time Sampling

« Sampling clock generator determines sampling timing which is synchronized with GMP input S|gnal "
with delay time (AT)

* T/H circuit down-converts the GMP input signal to lower frequency intermediate signal (V)

* Enables a high-speed and low power consumption sampling circuits

Sampling point
!

10ns

AN
7

Real time

1 frame =10ns (1024 pts) Pulse Width: 170 ps
Center Frequency: 6GHz

Y. Masui et al., IEEE BioCAS 2018 16



GMP Equivalent Time Sampling

Rx chip Rx module
=

b :F"- '

NS =

100MSps ADC + Equivalent-time sampling
= 102.4 GHz sampling

H. Song et al., IEEE Access, (Volume:3 ) Page(s):2111 — 2121, 29 Oct., 2015 v



GMP Equivalent Time Sampling Circuits

) 1.6 GHz PLL — 100 MHz r?ference clock(CK) Tlmlng diagram
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MUX selects 1 phase so that 1.6 GHz sliding clock is generated.
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A. Toya et al., Japanese Journal of Applied Physics 52 (2013) 04CEOQO7 (6 pages) 18



SP8T Switching Matrix
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SP8T Switching Matrix
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UWB Antenna

f'csi-r range: (Min: 0/ Max: 40)
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H. Song et al., Scientific Reports volume 7, Article number: 16353 (2017) 21



4x4 UWB Antenna Array

H. Song et al., Scientific Reports volume 7, Article number: 16353 (2017) 22



Hand-held Impulse-Radar Detector
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Hand-held Impulse-Radar Detector
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Level (dBm)

Level Diagram of Impulse-Radar Detector
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Detectability of Tumor Phantom

« Detector rotates clockwise around antenna center, signals obtained from 120 angles
« 1-cm?3 bacon target is inserted into the phantom (dielectric constant is 45 at 6 GHz)

« Peak of received signals after A/D conversion is 2300 LSB (least significant bit)
corresponding to 12-bit ADC

. Received Signals vs. rotation angle
Breast Phantom: Silicone

Tumor Phantom: Bacon
» § 360
% 300

H. Song et al., Scientific Reports, vol. 7, Article number: 16353 (2017)



Detectability of Tumor Phantom

« Scattered signals very weak compared with direct wave, cannot be observed explicitly in raw form

» Reference signal formed by averaging all received signals to eliminate scattered signals from the
target which arrive at different times - extract target reflections after subtracting reference signal

 Subtracted waveforms for 0-360° rotation (120 angles) are shown

« Amplitude is 100 LSB after A/D conversion due to the loss in the phantom

« Reconstruct breast image after applying confocal algorithm to subtracted signals

Confocal Images
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Detectability of Excised Tumor Tissue

» System applied to excised breast tissues after total mastectomy surgery at Hiroshima Universit'y~
Hospital

» After operation, breast is first dissected by pathologist to confirm tumor position and take tumor
samples for diagnosis

 Breast is covered with poly-ethylene film to isolate blood and fold the cut incision

 Impulse-radar-detector is placed on breast tissue for imaging

Excised Tumor Tissue Impulse Radar Detector
o A A W— ‘

H. Song et al., Scientific Reports, vol. 7, Article number: 16353 (2017) 29



150

120

(mm)

0 30

0 30

H. Song et al., Scientific Reports, vol. 7, Article number: 16353 (2017)

60 90
X (mm)

120

120

150

150

Coronal

Sagittal

30



Clinical Examination

Pilot clinical test

* In clinical applications, five volunteer patients, who have been diagnosed with
breast cancer, were recruited with ethical approval and informed consent.
Malignant tumors include invasive ductal carcinoma (IDC) and ductal carcinoma

in situ (DCIS).

 Patients were informed of the total process and signed consent. Before the test,
the clinical doctors were trained to use the detector. The clinical tests were
conducted at the Hiroshima University Hospital by the oncologists without any
engineers present.

« By comparing the imaging results with the MRI, X-ray and PET (positron
emission tomography), the conclusion was made.



Clinical Examination
Ethical approval and informed consent:

» Performed pilot clinical tests conducted by following guidelines and protocols of the Japan

Clinical Oncology Group protocol manual ver.2.6, which approved the breast cancer detector and
its measurement procedure (Hiroshima University Clearance number: C-153)

 UMIN-CTR (University Hospital Medical Information Network-Clinical Trials Registry) number is
UMINO00026181. Informed consents of all volunteers obtained before the clinical test.

Table 1 Patient characteristics.

Tumor size (cm)

Pathological
Case Age(y) Tumorside Tumor location Histology invasive size MMG US MRI PET ER PgR HER2 Ki-67 (%)
1 67 Left Upper-inner IC-NST 2.5 =3 23 2 1.6 - - - 13
2 43 Right Upper-outer IC-NST 1.1 - 28 15 14 =% + ¥ 20
3 73 Left Upper-inner Microinvasive 0.05 3.4 36 26 3.3 - - - 17
4 58 Left Central IC-NST 2.8 28 21 28 25 . + - 20
5 36 Left Upper-inner IC-NST 25 1.9 1.9 2 1.4 - + - 47

Note: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IC-NST, invasive carcinoma of no special type; MMG, mammog-

raphy; MRI, magnetic resonance imaging; PET, positron emission tomography; PgR, progesterone receptor; SUV, standardized uptake value;
US, ultrasonography.

S. Sasada et al., J. Med. Imag. 5(2), 025502 (2018), 32 32



Clinical Examination

 Patients laid down in supine position and detector is placed on breast

« Green marker is pasted on the outside of the system, indicating start angle position pointing to the
head; rotation is clockwise

* X-axis set on intersection of transverse and coronal planes

* y-axis set on intersection of sagittal and coronal planes

_J L O X
Detector
rotate \ /

\IJL \ |

H. Song et al., Scientific Reports, vol. 7: 16353 (2017) 33



Clinical Examination
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Clinical Examination

Confocal Images 3-D Position of Patient’s Cancer
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Clinical

Examination
Case 1 X-ray
Malignant tumor can be
detected by the impulse-
radar-based detector. Jitrasound
MRI
PET

S. Sasada et al., J. Med. Imag. 5(2), 025502 (2018), 36



Clinical

Examination
Case 2

X-ray mammography failed
to detect the cancer
because of dense breast of a
young patient, whereas
impulse-radar-based
detector can detect the
cancer successfully.

X-ray

(b) =

Ultrasound

¥ (mm)

This system has a potential
for early stage cancer
screening for young women
without pain and ionizing
radiation.

MRI

PET

S. Sasada et al., J. Med. Imag. 5(2), 025502 (2018), 37



Clinical
Examination
Case 3

X-ray

Micro-invasive cancer with
0.05mm size can be detected by
impulse-radar-based detector.

Early stage cancer with Ultrasouna

extensive intra-ductal
component (EIC) can be
detected by impulse-radar-

based detector. MR

eSS PET

S. Sasada et al., J. Med. Imag. 5(2), 025502 (2018), 38



Conclusion

Hand-held impulse-radar breast cancer detector was developed using CMOS
|ICs for the first time.

100% detectability of malignant breast tumors was demonstrated in the clinical
test at Hiroshima University Hospital.

Confocal imaging results are consistent with those of MRI and PET,
demonstrating the feasibility of the hand-held impulse-radar detector for
malignant breast tumors.

Impulse-radar-based detector has potential for early stage cancer screening for
young women without pain and ionizing radiation.
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