Basics of Jitter in Wireline Communications

Ali Sheikholeslami University of Toronto, Canada <u>ali@ece.utoronto.ca</u>

sponsored by SSCS Distinguished Lecture Program

August 23, 2019 San Diego, CA

Outline

Part One: Basics of Jitter

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- Example: Jitter in Ring Oscillator
- Summary of Part One

Part Two: Jitter in CDR

- □ Jitter in Clock and Data Recovery
- Effects of Jitter on Bang-Bang CDR Operation
- □ Jitter Monitoring and Jitter Mitigation
- □ Intentional Jitter: How Jitter can help
- □ Summary
- References

Wireline Transceiver Building Blocks

- \Box Transceiver = Transmitter (TX) + Receiver (RX)
- □ TX pre-equalizes and sends data timed with CK_{TX}
- □ RX equalizes RX data, recovers CK_{REC}, and detects data
- □ Goal: Minimize Bit Error Rate (BER), typically < 10⁻¹⁵

Effects of Timing Uncertainty on BER

- □ No clock is perfect: they are either slow or fast
- Uncertainty as to when they are slow or fast
- VDD noise, channel, EQ, cross-talk contribute to this
- □ Timing uncertainty leads to errors in detected bits

Data Eye (with and without Jitter)

Without Jitter

With Jitter

Data eye at decision point; almost closed w/ jitter
Unacceptable bit error rate (BER) with jitter

Three Questions:

- 1. Can we live with this timing uncertainty yet be precise?
- 2. How to monitor this and to reduce/mitigate it?
- 3. If jitter is enemy of BER, how to best defeat it?

Outline

Motivation

□ Jitter Definitions: What is Jitter?

- □ Characterizing and Classifying Jitter
- Example: Jitter in Ring Oscillator
- □ Summary of Part One

Absolute Jitter

□ Timing deviation between a jittery CK and an idea CK

- □ A discrete-time random signal, defined as $a_k := t_k kT$
- Never have an ideal clock; how is this useful?

Relative Jitter

- □ Timing difference between two non-ideal clocks
- Another discrete-time random signal

$$\Box \quad \mathbf{r}_{k} := t_{k} (CK1) - t_{k} (CK2) = \mathbf{a}_{k} (CK1) - \mathbf{a}_{k} (CK2)$$

□ Where do we use this?

Period Jitter

Also know as Cycle Jitter, defined as difference between edge-to-edge interval ("period") and the nominal period

$$\Box \quad \boldsymbol{p}_{k} := (t_{k+1} - t_{k}) - T = T_{k} - T = \boldsymbol{a}_{k+1} - \boldsymbol{a}_{k}$$

- Period jitter can be derived easily from absolute jitter
- □ Where do we use this?

N-Period Jitter

- Also know as Accumulation Jitter, defined as an accumulation of period jitter over N consecutive intervals
- $\square \boldsymbol{p}_k(N) := (t_{k+N} t_k) NT = \boldsymbol{a}_{k+N} \boldsymbol{a}_k$
- □ Where do we use this?

Data Jitter

- □ Jittery CK retimes random binary input data
- Due to random nature of data sequence (i.e. lack of transitions), jitter not fully observable at the output

Data-Dependent Jitter

- Consider data at transmitter with no jitter
- Data is binary random sequence; random transition
- Channel has limited bandwidth; acts like RC
- □ A transition moves depending on preceding data
- □ This produces Data-Dependent Jitter (DDJ)
- □ Type of Deterministic Jitter (DJ) because it is predictable
- □ In contrast with Random Jitter (RJ) we discussed

No Jitter versus Random Jitter (RJ)

Bounded/Deterministic Jitter

- □ Sinusoidal jitter
- □ Histogram of sine
- Used to characterize links
- Inter-Symbol Interference (ISI) induced jitter
- Deterministic, bounded

Duty-Cycle Distortion (DCD)

- □ Histogram over one UI
- UI: Unit Interval

DCD-Induced jitter
Histogram over 4 UIs

Outline

- Motivation
- □ Jitter Definitions: What is Jitter?

□ Characterizing and Classifying Jitter

- Example: Jitter in Ring Oscillator
- □ Summary of Part One

Characterizing Jitter

What we said so far:

- Jitter in all its forms (absolute, relative, period, N-period) is a discrete-time random signal
- Interestingly, all can be derived from absolute jitter
- Data jitter can be deterministic, data dependent
- □ How do we characterize a random signal?
- □ Statistics:
 - Histogram, Probability Density Function (PDF)
 - mean, rms, signal power
- □ Time Domain:
 - How the signal statistics changes with time
 - Autocorrelation function
- □ Frequency Domain:
 - Fourier of Autocorrelation function: Power Spectral Density (PSD)

Jitter Histogram

Plots the number of hits for each jitter amplitude
Mean, rms, and peak-to-peak jitter can be calculated

Jitter Probability Density Function

Normalize vertical axis of histogram to have unit area
Red area indicates probability of jitter in the interval

Other Histogram Examples

Jitter Histogram/PDF Enough?

- Histogram or PDF only shows:
 - Relative occurrence of a jitter amplitude (range)
 - But, not the time behavior of jitter
- □ Two waveforms above have same histogram (uniform)
- □ But, they have totally different time behavior
 - Black samples are correlated (predictable), red samples not
- Swapping samples in time does not affect the PDF!

Voltage Spectrum of Jittery Clock

- Clock is a periodic signal with period $T_0 (=1/f_0)$
- \Box Clock spectrum will contain harmonics at nf₀
- □ In addition, jitter causes "skirts" around delta functions
- D Power level of skirt (relative to carrier power) is called phase noise; typically measured at an offset from f_0
- □ Phase noise serves as a figure of merit for the oscillators

Phase Noise

PSD of Jitter

- □ Can prove PSD of jitter is equal to phase noise
- □ Note: $\mathcal{L}(f)$ is one-sided whereas $S_{\varphi}(f)$ is two-sided
- $\square S_{\varphi}(f) = \mathcal{L}(f)u(f) + \mathcal{L}(-f)u(-f)$

From Phase Noise to Jitter rms

Sum of two jitter: Convolve PDFs

Combined Jitter in Eye Diagram

Combined DCD & RJConvolution of two PDFs

Combined jitter is sum of individual jitter signals Combined jitter PDF is convolution of individual PDFs

Classifying Jitter

- Total Jitter is sum of DJ and RJ
- DJ includes:
 - Data-Dependent, Duty-Cycle-Distortion (DCD) Jitter
 - Sinusoidal, any other bounded periodic/non-periodic jitter
- □ RJ is unbounded and uncorrelated

Example Calculations

Outline

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- Example: Jitter in Ring Oscillator
- Summary of Part One

Example: A Ring Oscillator

For any output, say v₁, the period is 6t_{pd}
But t_{pd} is random variable (signal) changing with time

Example: Delay of an Inverter

- \Box I_{n1}(t) and I_{n2}(t) represent the thermal (and other) noise currents of M1 and M2, respectively
- □ $I_{n1}(t)$ and $I_{n2}(t)$ will cause v_o to reach a threshold ($V_{DD}/2$) faster or slower than nominal; causing delay of each stage to be a random variable

Modeling Jitter in Ring Oscillator

- Let X_i[n] represent the random excess delay introduced by inverter i in n-th cycle
- \Box X_i[n] is a random signal with expected value of zero
- \Box What can we say about the jitter in the output y[n]?
- $\Box \quad y[n] = y[n-1] + X_1[n] + X_2[n] + X_3[n]$
- \square Reasonable to assume X_i[n] is stationary & uncorrelated
- □ Then, y[n] shows characteristics of a random walk

Random Walk Process

- □ Start at 0 and toss a coin
 - If head, move one step forward, then repeat
 - If tail, move one step backward, then repeat
- □ Graph shows 10 difference trials (imagine for 10 people)
- □ The *expected* distance for all trials are zero
- But the variation around 0 grows over time

Jitter Variance over Time

□ Jitter variance increases linearly with time

Jitter rms increases with root square of time

Jitter Variance of a PLL

- Oscillator can be placed inside a PLL loop to compare its timing against a clean reference clock
- Jitter variance increase with time until one loop delay, at which point jitter variance no longer grows
Summary of Part One

□ Jitter definitions:

- Absolute jitter: deviation from an ideal clock timing
- Relative jitter: timing difference between two real clocks
- Period jitter: deviation in period from average period
- □ Jitter histogram, PDF, PSD
 - Histogram/PDF provide statistics: mean, rms, peak-to-peak
 - PSD is based on jitter behavior over time (autocorrelation)
 - PSD provides information in frequency domain
- □ Jitter variance in a ring increases linearly with time
- □ A control loop (in a PLL) is used to limit jitter

Part Two: Jitter in CDR

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- □ Example: Jitter in Ring Oscillator
- □ Summary of Part One

□ Jitter in Clock and Data Recovery

- □ Effects of Jitter on Bang-Bang CDR Operation
- □ Jitter Monitoring and Jitter Mitigation
- □ Intentional Jitter: How Jitter can help
- □ Summary
- References

Clock and Data Recovery Blocks

- □ A loop measures the phase difference between D_{IN} and CK_{REC} and controls the VCO frequency
- □ Loop dynamics shaped by PD, CP, LF, and VCO behavior
- \Box CK_{REC} is used to sample D_{IN} and produce D_{REC}

Linear Model of CDR

$$S_{out}(f) = |H_T(f)|^2 S_{in}(f) + |H_G(f)|^2 S_{VCO}(f)$$

$$|H_T(f)|^2 = \left| \frac{K_{PD} K_{VCO} H_{LF}(f)}{j2\pi f + K_{PD} K_{VCO} H_{LF}(f)} \right|^2$$
$$|H_G(f)|^2 = \left| \frac{j2\pi f}{j2\pi f + K_{PD} K_{VCO} H_{LF}(f)} \right|^2$$

Model of CDR with Charge Pump

Jitter Transfer Function

Zero/Pole Locations

Jitter Peaking

Undesirable as it enhances jitter, esp. in repeaters
Standards requirement < 0.1dB

Jitter Generation Function

Jitter Tolerance Concept

Maximum tolerable peak-to-peak jitter on CK edge
1UI_{pp} for high jitter frequencies

□ Higher than 1UI_{pp} for lower jitter frequencies

Jitter Tolerance Curve

Outline

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- Example: Jitter in Ring Oscillator
- □ Example: Jitter in Clock and Data Recovery

□ Effects of Jitter on Bang-Bang CDR Operation

- □ Jitter Monitoring and Jitter Mitigation
- □ Intentional Jitter: How Jitter can help
- □ Summary
- References

Bang-Bang PD Operation (1 of 3)

Bang-Bang PD Operation (2 of 3)

D _n	В	D _{n+1}	Early	Late	PDout
х	x	×	0	1	1
Х	Х	×	1	0	-1
Х	Х	Х	0	0	0

Bang-Bang PD Operation (3 of 3)

[Lee JSSC 2004]

Jitter in Wireline Communications

BB-PD Model with Jitter

[Liang JSSC 2015]

Effects of Jitter on CDR Stability

Outline

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- Example: Jitter in Ring Oscillator
- Example: Jitter in Clock and Data Recovery
- □ Effects of Jitter on Bang-Bang CDR Operation

□ Jitter Monitoring and Jitter Mitigation

- □ Intentional Jitter: How Jitter can help
- □ Summary
- References

Why Jitter Monitoring?

- Simulated/measure jitter budget for a 25Gb/s optical link [Takemoto JSSC 2014]
- □ Jitter difficult to predict and mitigate at simulation time

Ideal Sampling Position

- □ Sample in the middle of horizontal eye opening
- □ Slice it with a level at the middle of vertical eye opening
- These are hard to predict at design time

Eye-Opening Monitor

```
[Noguchi JSSC '08]
```


- EOM samples data at a phase/voltage offset away from CDR sampling point
- Comparing the two samples creates an "eye map"

Search for Ideal Sampling Position

[Noguchi JSSC '08]

□ Comparing CDR and EOM data creates eye contours

Adaptive algorithms will position CDR sampling location

Ali Sheikholeslami

CDR with Eye-Opening Monitor

Moving to Ideal Position

[Noguchi JSSC '08]

Initial sampling position of CDR is detected using EOM

Sampling position is moved to the center of the eye

Ali Sheikholeslami

Jitter Monitoring for Jitter Tolerance

Adapt loop gain (K_G) to maximize JTOL in PI-based CDR

Monitoring Jitter at BB-PD Output

PSD of Relative Jitter

Power Spectral Density (PSD) versus loop gain (K)

- The total power is in units of (ps)²
- Desired K corresponds to no overshoot or undershoot
- Hard to measure

Ali Sheikholeslami

Measure Autocorrelation

□ Use autocorrelation of PD output, R(n), instead

- Reveals similar behavior as PSD
- Adjust K to arrive at "critically damped" condition
- How? Start with max K, measure n_{peak}
- Reduce K gradually to force R(n_{peak}) to zero.

Measured Jitter Tolerance

Measuring Absolute Jitter

[Liang JSSC `15]

 $K_{P} \cdot \Phi_{ER} = K_{P} \cdot (\Phi_{DATA} - \Phi_{CK})$

- Interested in distinguishing between jitter in the incoming data and the recovered clock
- Only the relative jitter between the two is observable
- □ Without ideal clock, how to measure absolute jitter

Use Two Phase Detectors

- □ Assumes Φ_{CK1} and Φ_{CK1} are uncorrelated
- □ Insert adjustable delay on one side
- **Combine the two for autocorrelation function** $R_{DATA}(k)$
- □ If jitter is stationary

$$E[\Phi_{DATA}(n) \cdot \Phi_{DATA}(n-k)] = R_{DATA}(k)$$

- □ LPF approximates the Expected Value
- **D** Fourier Transform of $R_{DATA}(k)$ gives the PSD of Φ_{DATA}

Implementation in Multi-Lane CDR

Measured Results [Liang JSSC'15]

Outline

- Motivation
- □ Jitter Definitions: What is Jitter?
- □ Characterizing and Classifying Jitter
- **Example:** Jitter in Ring Oscillator
- Example: Jitter in Clock and Data Recovery
- □ Effects of Jitter on Bang-Bang CDR Operation
- □ Jitter Monitoring and Jitter Mitigation
- □ Intentional Jitter: How Jitter can help
- Summary
- References

Intentional Jitter to Improve Linearity

[Takauchi JSSC '03]

4-Phase 2.5GHz Edge Clock

Jitter Injection for Measurement

- □ Intentional jitter toggles LSB for PI of Edge CK
 - Helps calibrate BB-PD effective gain measurement
 - Improves accuracy of relative jitter measurement
Injected Jitter Provides Observability

[Liang CICC'17]

*Outstanding Student Paper Award from CICC2017!

Other Relevant Topics

- Effect of Jitter on Data Converters
 - Both DAC and ADC
 - Time-Interleaved ADC's
- **Effects of Jitter on** $\Delta\Sigma$ **ADC's**
 - Jitter noise is shaped by the NTF
- □ Effects of Jitter on Wireless Systems/Circuits
- □ Jitter Amplifications by Passive Channel

Summary

□ Jitter definitions:

- Absolute jitter: deviation from an ideal clock timing
- Relative jitter: timing difference between two real clocks
- Period jitter: deviation in period from average period
- □ Jitter histogram, PDF, PSD
 - Histogram/PDF provide statistics: mean, rms, peak-to-peak
 - PSD is based on jitter behavior over time (autocorrelation)
 - PSD provides information in frequency domain
- □ Jitter monitoring unavoidable as we move to higher rate
 - Monitoring is the first step towards jitter mitigation
- □ Jitter is injected intentionally to improve observability

References (1 of 2)

Basics of Jitter

- □ N. Da Dalt, ISSCC 2012 Tutorial, available online www.sscs.org
- N. Da Dalt and A. Sheikholeslami, "Understanding Jitter and Phase Noise A Circuits and Systems Perspective" by Cambridge University Press, 2018

Jitter in Ring Oscillators and CDR

- □ T. H. Lee et al., "A 155-MHz Clock Recover- and Phase-Locked Loop," JSSC,, pp. 1736-1746, Dec. 1992
- J. McNeill, "Jitter in Ring Oscillators," JSSC, pp. 870-879, June 1997
- □ J. Lee et al., "Analysis and Modeling of Bang-Bang Clock and Data Recovery Circuits," JSSC, pp. 1571-2004, Sep. 2004

Jitter Monitoring and Mitigation

- T. Takemoto, et al., "A 25-Gb/s 2.2-W 65-nm CMOS Optical Transceiver Using a Power-Supply-Variation-Tolerant Analog Front End and Data-Format Conversion," JSSC, vol. 49, no. 2, pp. 471–485, Feb 2014
- H. Noguchi, et al., "A 40-Gb/s CDR Circuit with Adaptive Decision-Point Control Based on Eye-Opening Monitor Feedback," JSSC, vol. 43, no. 12, pp. 2929-2938, Dec 2008

References (2 of 2)

- □ J. Liang, et al., "A 28Gb/s Digital CDR with Adaptive Loop Gain for Optimum Jitter Tolerance," ISSCC, pp. 122-123, Feb 2017
- □ J. Liang, et al., "On-Chip Measurement of Clock and Data Jitter With Sub-Picosecond Accuracy for 10 Gb/s Multilane CDRs," JSSC, vol. 50, no. 4, pp. 845-855, Apr. 2015

Intentional Jitter

- H. Takauchi et al., "A CMOS Multichannel 10-Gb/s Transceiver," ISSCC 2003, paper 4.2. Expanded version in JSSC, pp. 2094-2100, Dec. 2003
- □ J. Liang, et al., "Jitter Injection for On-Chip Jitter Measurement in PI-Based CDRs," CICC, pp. 1–4, Apr. 2017

Acknowledgement

- Material mostly from a book published in March 2018 by Cambridge University Press
- □ Nicola Da Dalt
- □ All my past graduate students working on this topic:
 - Joshua Liang, Danny Yoo, Wahid Rahman
 - Sadegh Jalali, Clifford Ting, Ravi Shivnaraine, Neno Kovacevic
 - Shayan Shahramian, Tina Tahmoureszadegh, Siamak Sarvari, Behrooz Abiri
 - Oleksiy Tyshchenko, Marcus van Ierssel

□ Hirotaka Tamura, Fujitsu Laboratories Limited, Japan