Circuit Intuitions

Ali Sheikholeslami Dept. of Elec. & Comp. Engineering University of Toronto, Canada <u>ali@ece.utoronto.ca</u>

sponsored by SSCS Distinguished Lecture Program

August 23, 2019 University of California, San Diego

Ali Sheikholeslami

Outline

- □ Why Circuit Intuitions?
- Overview of Articles Series
- □ Looking into a Node
 - Use of Thevenin and Norton Equivalent Circuits

Why Circuit Intuitions?

- □ Turning circuit design/analysis into a fun game!
- □ Gain intimate understanding of how circuits behave
- Making things simple, obvious!
- □ A gateway to innovation!

Circuit Intuitions Series

- Methods of Analysis
 - Looking into a Node
 - Source Degeneration; Bandwidth Extension
 - Miller's Theorem; Miller's Approximation
- Fundamental Concepts
 - Process Variation and Pelgrom's Law
 - Why Sinusoids? Reinventing the Wheels, Random Walk
 - Capacitor Analogy (3 articles)
 - Norton and Thevenin Equivalent Circuits (3 articles)
- Special Circuits
 - Negative Cap.; Chopper Amp.; Capacitor as a Resistor

Focus of this Talk

Methods of Analysis

- Looking into a Node
- Source Degeneration; Bandwidth Extension
- Miller's Theorem; Miller's Approximation
- □ Fundamental Concepts
 - Process Variation and Pelgrom's Law
 - Why Sinusoids? Reinventing the Wheels
 - Capacitor Analogy (3 articles)
 - Norton and Thevenin Equivalent Circuits (3 articles)

□ Special Circuits

Negative Cap.; Chopper Amp.; Capacitor as a Resistor

Linear Time Invariant (LTI) Circuits

- Output is a linear combination of inputs!
 - Simple Case: If there are no storage elements (C or L)

$$y = h_1 x_1 + h_2 x_2 + h_3 x_3 + \cdots$$

□ Superposition holds!

$$y = y_1 + y_2 + y_3 + \cdots$$

Output is sum of contributions from individual inputs!
 Thevenin/Norton Theorem: consequence of superposition

Thevenin/Norton Theorems

Ali Sheikholeslami

An Intuitive Proof of Thevenin

 $v_{out}(t) = v_{oc}(t) - R_{eq}i_L(t)$

An Intuitive Proof of Norton

 $i_L(t) = i_{sc}(t) - v_{out}(t)/R_{eq}$

Small-Signal Model of NMOS/PMOS

Assumption: All transistors are in Saturation Region!

- □ g_m is the short-circuit transconductance of the transistor
- \Box g_{mb} is additional g_m due to non-zero v_{bs}
- \Box r_o is the transistor output resistance

Circuits with More Transistors

Analysis becomes too cumbersome very quickly
 Practice of KVL/KCL, leaves no room for intuition

Basic Premise

- □ Assume low-frequency analysis in this talk!
- □ That is, capacitors do not show up!
- □ In small-signal, transistors behave like LTI systems
- □ Superposition holds!
- Every circuit has a Thevenin/Norton equivalent circuit
 - Open-circuit voltage source (v_{oc}) in series with R_{eq}
 - Short-circuit current source (i_{sc}) in parallel with R_{eq}
 - When there is no input signal, they are just resistors!

□ We rely on Thevenin/Norton equivalent circuits ONLY!

Ali Sheikholeslami

"Library Elements"

- □ We call these "library elements"
- Commonly-Used Configurations
 - Looking into the gate and the drain
 - Looking into the source
 - Diode-Connected transistor
 - Looking into the drain with source degeneration
 - Looking into the source with load at the drain
 - Thevenin/Norton Equivalent looking into the drain
 - Thevenin/Norton Equivalent looking into the source

□ Let us build this library; one element at a time

Looking into the Gate

□ Looking into the gate, we see infinite resistance

Ali Sheikholeslami

Looking into the Drain

□ Looking into the drain, while gate and source are grounded, we see r_0 !

Ali Sheikholeslami

Looking into the Source

- \Box $g_{me} = g_m + g_{mb} = 1.1 1.2 g_m$
- □ Looking into the source, while gate and drain are grounded, we see a resistor whose value is $R_{eq} = r_o ||1/g_{me} \approx 1/g_{me}$

Diode-Connected Transistor

□ A diode-connected transistor is a resistor whose value is $R_{eq} = r_o ||1/g_m \approx 1/g_m$

Ali Sheikholeslami

Looking into the Drain with $R_{\rm S}$

- □ Also known as Source Degeneration
- □ Effective way to increase the output impedance
- \Box Multiplying the source resistance by $g_{me}r_o$

Looking into the Source with $\ensuremath{\mathsf{R}_{\mathsf{D}}}$

□ If $R_D < < r_o$, then $R_{eq} \approx 1/g_{me}$ □ R_D is divided by $(1+g_{me}r_o)$ and appears at the source

Ali Sheikholeslami

Looking into the Drain with Input

Two Methods:

□ Find the Thevenin Equivalent Circuit:

- open-circuit voltage v_{oc} in series with R_{eq}
- □ Find Norton Equivalent Circuit:
 - short-circuit current i_{sc} in parallel with R_{eq}
- $\Box \quad \text{Note that } \mathbf{v}_{oc} = \mathbf{i}_{sc} \times \mathbf{R}_{eq}$

In this circuit, easier to find $v_{\mbox{\scriptsize oc}}$ first

 \rightarrow v_s=0, no body effect, v_{oc}=-g_mr_ov_{in}

$$\rightarrow$$
 i_{sc}=v_{oc}/R_{eq}

Norton more intuitive due to high R_{eq}

$$v_{oc} = -g_m r_o v_{in}$$
$$i_{sc} = v_{oc}/R_{eq}$$

Looking into the Source with Input

- Find Norton Equivalent Circuit first:
 - short-circuit current i_{sc} in parallel with R_{eq}
- □ Shorting output to ground $\rightarrow v_s=0$

- \rightarrow Use current division
- $r_o \rightarrow i_{sc} = g_m v_{in} \frac{r_o}{r_o + R_D}$ \rightarrow Given small R_{eq} , Thevenin i_{sc} is more intuitive

Ali Sheikholeslami

Putting It All Together (1 to 4)

Looking into one terminal while the other two grounded
 Looking into the drain of a diode-connected transistor
 No additional resistor in the circuit

Putting It All Together (5 to 8)

Adding resistors and input to the circuit

Ali Sheikholeslami

Finding Voltage of "any" Node

Method 1: Use Norton equivalent circuit

- \Box Short the node to ground; find i_{sc}
- \Box Find R_{eq} (using library elements)
- $\square Multiply the two: v_{out} = i_{sc} \times R_{eq}$

Method 2: Use Thevenin equivalent circuit

- \Box Open the load; find v_{oc}
- \Box Find R_{eq} (same as in Method 1)
- \Box Use voltage divider rule to find v_{out}

Example: Common-Source Amplifier

Example: Cascode Circuit

To find the output voltage \Box Use $i_{sc} \times R_{eq}$:

- Find out how i_{sc} and R_{eq} change compared to those for CS amplifier
- Gain intuition on why the gain changes from one to the other.

Also, find intermediate voltages (such as vd1) for added insight

Cascode Circuit: Find any Voltage (1)

Method 1:

Finding v_{d1} : Use Thevenin: • v_{out} (2) $\rightarrow R_{eq1} = r_{o1}$ (7) $\rightarrow v_{oc1} = -g_m r_{o1} v_{in}$ (6) $\rightarrow R_{eq2} = (r_{o2} + R_L) / (1 + g_{me2} r_{o2})$ $\rightarrow v_{d1} = -g_m r_{o1} v_{in} (r_{o1} || R_{eq2})$

Finding v_{out} : Use R_{eq2} to find the load current first :

Ali Sheikholeslami

Cascode Circuit: Find any Voltage (2)

Method 2:

Finding v_{d1} : (as in previous slide) $\rightarrow v_{d1} = -g_m r_{o1} v_{in} (r_{o1} || R_{eq2})$

Treat v_{d1} **as ideal source:** Find i_{sc} and R_{eq} at the output: $\rightarrow i_{sc} = v_{d1}/(1/g_{me}||r_o)$ $\rightarrow R_{eq} = r_o||R_L (not R_{eq} of original cct)$ $\rightarrow v_{out} = i_{sc}R_{eq}$

Ali Sheikholeslami

What Is the Intuition here?

Example: Differential Pair (1)

Finding *v*_{*d*5}**:** Use the Norton Equivalent at the source of M_1 : (4) $\rightarrow R_{eq3} = r_{o3} || 1/g_{m3}$ (6) → $R_{eq1} = (R_{eq3} + r_{o1})/(1 + g_{me1}r_{o1})$ (8) $\rightarrow i_{scl} = g_{ml} v_{in} r_{ol} / (r_{ol} + R_{eq3})$ (2) $\rightarrow R_{eq5} = r_{o5}$ (4) $\rightarrow R_{ea4} = r_{o4} \parallel 1/g_{m4}$ (6) → $R_{eq2} = (R_{eq4} + r_{o2})/(1 + g_{me2}r_{o2})$ → $v_{d5} = i_{sc1} (R_{eq1} || R_{eq5} || R_{eq2})$ Finding V_{out}: \rightarrow $v_{out} = (v_{d5}/R_{eq2}) R_{eq4}$

Example: Differential Pair (2)

Method 2:

Treat v_{d5} **as ideal source:** (from previous slide) $\rightarrow v_{d5} = i_{sc1} (R_{eq1} || R_{eq5} || R_{eq2})$

Finding v_{out} : Find i_{sc} and R_{eq} at the output:

$$\Rightarrow i_{sc} = v_{d5}/(r_{o2}||1/g_{me2})
\Rightarrow R_{eq} = r_{o2}||r_{o4}||1/g_{m4}
Note: not equal to R_{eq} of original circuit
\Rightarrow v_{out} = i_{sc} R_{eq}$$

Ali Sheikholeslami

Example: Diode-Connected Cascode

Not one of the standard library elements

□ Apply a voltage, measure current

□ Use Superposition to find current

Ratio of test voltage to current is Req

□ Intuition?

Diode-Connected Cascode

Diode-Connected Cascode

- $\Box \quad i_x = i_{x1} + i_{x2}$
- $\square \quad R_{eq} = R_{eq1} || R_{eq2}$
- $\square \quad R_{eq1} \cong g_{me2}r_{o1}r_{o2}$
- $\square \quad R_{eq2} \cong 1/g_{m1}$

 $\square \quad R_{eq} \cong 1/g_{m1}$

Ali Sheikholeslami

Summary

- In small-signal, all transistor circuits (assuming saturation region) can be treated as LTI circuit
- □ Transistor circuits without a signal source are resistors
 - This is for low-frequencies only
 - At high-frequencies, we should add capacitors
 - See other circuit intuition articles for high frequencies
- □ Transistor circuits with input signal are represented by:
 - Their Thevenin equivalent circuits, or
 - Their Norton equivalent circuits
- □ There are different ways to arrive at the solution
- □ Use the method that adds intuition!

References (1 of 2)

All in Solid-State Circuit Magazine

- □ [A20] Circuit Intuitions: Transfer Resistor, Winter 2019.
- □ [A19] Circuit Intuitions: Thevenin and Norton Equivalent Circuits, Part 3, Fall 2018.
- □ [A18] Circuit Intuitions: Thevenin and Norton Equivalent Circuits, Part 2, Su. 2018.
- □ [A17] Circuit Intuitions: Thevenin and Norton Equivalent Circuits, Spring 2018.
- □ [A16] Circuit Intuitions: Random Walk in a Ring, Winter 2018.
- □ [A15] Circuit Intuitions: Reinventing the Wheel, Fall 2017.
- □ [A14] Circuit Intuitions: Capacitor as a Resistor, Summer 2017.
- □ [A13] Circuit Intuitions: Why Sinusoids?, Spring 2017.
- □ [A12] Circuit Intuitions: A Capacitor Analogy, Part 3, Winter 2017.
- □ [A11] Circuit Intuitions: A Capacitor Analogy, Part 2, Fall 2016.
- □ [A10] Circuit Intuitions: A Capacitor Analogy, Part 1, Summer 2016.
- □ [A9] Circuit Intuitions: Chopper Amplifier, Spring 2016.

References (2 of 2)

All in Solid-State Circuit Magazine

- □ [A8] Circuit Intuitions: Offset Cancellation, Winter 2016.
- □ [A7] Circuit Intuitions: Miller's Approximation, Fall 2015.
- □ [A6] Circuit Intuitions: Miller's Theorem, Summer 2015.
- □ [A5] Circuit Intuitions: Bandwidth Extension, Spring 2015.
- □ [A4] Circuit Intuitions: Process Variation and Pelgrom's Law, Winter 2015.
- □ [A3] Circuit Intuitions: Negative Resistance, Fall 2014.
- □ [A2] Circuit Intuitions: Source Degeneration, Summer 2014.
- □ [A1] Circuit Intuitions: Looking into a Node, Spring 2014.
 - See also Correction to Looking Into a Node, Summer 2014.

I would like to thank my undergraduate students at the University of Toronto, who have been the inspirations behind writing these articles.