Dissecting Design Choices for Power Efficient Continuous-time $\Delta\Sigma$ Converters

Shanthi Pavan Indian Institute of Technology, Madras Chennai, India

Outline

- Introduction
- Architectural design choices
- Circuit techniques for low power
- Design details
- Measured results
- Conclusions

$CT\Delta\Sigma M$ in 1 minute : Antialiasing

$\text{CT}\Delta\Sigma\text{M}$: A System for all Seasons

(Too) Many Design Choices

Curse of Too Many Choices

- Single bit quantizer + high OSR
 Or multibit quantizer + low OSI
 - Or multibit quantizer + low OSR?
- Flash ADC
 - Or SAR ADC?
- NRZ DAC

- Or Switched capacitor DAC for low jitter?

Buridan's Ass

$\Delta\Sigma$ Designer ...

Motivation

- Aim : Audio DSM with > 100 dB DR
 - 0.18 μ m CMOS technology
 - As low power as possible
- Low distortion (~100 dB) audio $\Delta\Sigma$ converters
 - Typically realized with discrete-time, multi-bit loops

<u>Single-bit versus Multibit</u> <u>Modulators</u>

Quantizer : 1-bit versus 4-bit

4-bit quantizer needs half the OSR to achieve same in-band noise (Baseline : 3rd Order Single-bit DSM, OSR =128)

ADC Resolution

- 15x more comparators @ 1/2 speed
- 7x more ADC power, 15x more area
- 15x loop filter & clock path loading

Comparator Random Offset

SNDR with Random Offset

Third-order Modulator 16-level Quantizer

Loop Filter

- Loop filter should swing full-scale
- Difficult in high-speed designs

Loop Filter

- Comparator offset is benign
- Driving the 1-bit quantizer
 - Loop filter's last stage simpler to design
 - Particularly useful at high speeds

DAC: 1-bit versus 4-bit

though it operates at 2x the speed

Needs Dynamic Element Matching
DEM adds excess delay & power

Single-bit CTDSM Issues : Clock Jitter

Jittery clock \rightarrow equivalent to error at the input

Single-bit CTDSM Issues : Clock Jitter

Large jitter error \rightarrow rail-to-rail feedback waveform

Single-bit CTDSM Issues : Filter Linearity

Single-bit CTDSM Issues : Filter Linearity

Increased loop filter power dissipation needed to achieve linearity

Summary so far ...

- Single bit operation
 - Very efficient quantizer
 - Easy to drive
 - Sensitive to clock jitter
 - Loop filter needs to handle large swings
 - Increased power dissipation

Improved Single-bit CTDSM : FIR Feedback

FIR filter in the feedback path

Improved 1-bit CTDSM : FIR Feedback

Improved 1-bit CTDSM : FIR Feedback

FIR DAC and Element Mismatch

Semi-digital Implementation Mismatch does not lead to non-linearity

Improved 1-bit CTDSM : FIR Feedback

Summary so far ...

- Single bit ADC + FIR DAC
 - -Low power ADC, easy to drive
 - -Inherently linear DAC, no DEM
 - -Low jitter sensitivity
 - -Improved loop filter linearity

Benefits off single bitt opperation

Key Takeaway

Single-bit ADC + FIR DAC

B.Putter, ISSCC 2003; O.Oliaei, TCAS-II 2003

- but dormant for a long while why?
 - (?) Multibit & DEM well established by 2003
 - (?) More difficult to understand
 - (?) Stability

FIR DAC Summary

- Low power loop ADC
- Simple DAC no DEM
- Multilevel feedback waveform
 - Improved loop filter linearity
 - Reduced clock jitter sensitivity
- Performance benefits of a multibit quantizer
 - But with low power
FIR DAC : Number of taps

- More FIR taps \rightarrow Better filtering
- →Reduced clock jitter sensitivity, better linearity

Increasing FIR Length

Increasing FIR Length

Increasing FIR Length

Error Signal Magnitude

Modulator Architecture

Third Order CIFF-B Prototype

FIR Feedback : More Benefits

1/f Noise in CTDSMs

1/f Noise Mitigation in CTDSMs

1/f Noise Mitigation in CTDSMs

Chopping

Modulates 1/f noise out of the signal band

Chopping in CT $\Delta\Sigma$ -Modulators

Chopping in a $CT\Delta\Sigma M$

At **EVERY** transition of the chopping clock

At EVERY transition of the chopping clock

Error Model of a Chopped Integrator

Error current injected at **every edge** of f_{ch} → Sampling the virtual ground at 2f_{ch} → Error proportional to C_i/RG_{ota}

Output parasitic switched at every edge of f_{ch}

Chopped C_o: Equivalent Resistor

Reduced Integrator DC Gain

Chopping in CTDSMs : Summary

 $\frac{1}{2f_{ch}}$

- Reduced integrator gain
 - Switched capacitor resistor at the output $1/(4f_{ch}C_{o})$

Chopping in CTDSMs : Summary

Solutions

Increase $G_{ota}R$

X 20dB reduction of alias noise dissipates10x power

Increase number of quantizer levels

X 20dB reduction of alias noise needs 10x the number of levels

FIR Feedback DAC

FIR Feedback and Chopping

Chopping frequency chosen as f_s/2N
→ Nulls at multiples of 2f_{ch}
→ Reduced aliasing of shaped noise

1-bit quantizer & FIR Feedback : Summary

Architecture and Circuit Design

3rd Order CTDSM Architecture

3rd Order CTDSM Architecture

3rd Order CTDSM Architecture

Monte Carlo : 1% random tap mismatch

OTA Design

Measurement Results

Die Photo & Layout Snapshot

UMC 180nm CMOS process (Europractice)

Dynamic Range Plot

PSD at Peak SNDR

PSD Comparison : $f_c = f_s/24 \& f_s/20$

PSD Comparison

Performance Summary and Comparison

				-	-
		[3]	[4]	[5]	[6]
	This work	JSSC	ISSCC	VLSI	ASSCC
		2014	2008	2015	2014
BW (kHz)	24	24	20	24	24
Feature Size (nm)	180	180	45	65	28
Supply (V)	1.8	1.8	1.1	1.1	1.1
Power (µW)	280	280	1200	121	9900
Peak SNDR (dB)	98.5	98.2	76.5	85	98.5
DR (dB)	103.6	103	91.7	88	100.6
SFDR (dB)	107.6	106	80.5	90	102.6
Chop Freq. (kHz)	256	-	46	-	-
FoM _{SNDR} (fJ/lvl)	85	88	500	173.4	342
FoM _{Schreier} (dB)	177.8	177.5	148.5	168	172

A Tale of 4 ADCs

- Multi-bit (4-bit ADC in the loop)
 - ESSCIRC 2007, JSSC 2008
- Single-bit ADC with linearity enhancement
 - ESSCIRC 2009, JSSC 2010
- Single-bit ADC + 12-tap FIR DAC
 - ASSCC 2013, JSSC 2014
- Single-bit ADC + 12-tap FIR DAC + Chopping
 - ISSCC 2016, JSSC 2017
- Same process, same design group

Multi-bit Modulator

- Third order CIFF loop
- 4-bit flash ADC
- OSR = 64 (Clock Rate = 3.072 MHz)
- NRZ Resistive DAC
- Data Weighted Averaging

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008

A Power Optimized Continuous-Time $\Delta \Sigma$ ADC for Audio Applications

Shanthi Pavan, Nagendra Krishnapura, Ramalingam Pandarinathan, and Prabu Sankar

Single-bit Modulator

- Third order CIFF loop
- 1-bit ADC
- OSR = 128 (Clock Rate = 6.144 MHz)
- NRZ Resistive DAC

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 7, JULY 2010

13

Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique

First integrator has to be very linear

The Assisted-Opamp Integrator

1-bit + FIR DAC Based Modulator

- Third order CIFF-B loop
- 1-bit ADC + 12-tap FIR DAC
- OSR = 128 (Clock Rate = 6.144 MHz)
- NRZ Resistive DAC

Modulator Architecture

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 11, NOVEMBER 2014

Low Power Design Techniques for Single-Bit Audio Continuous-Time Delta Sigma ADCs Using FIR Feedback

Amrith Sukumaran and Shanthi Pavan, Senior Member, IEEE

1-bit + FIR DAC + Chopping

- Third order CIFF-B loop
- 1-bit ADC + 12-tap FIR DAC
- OSR = 128 (Clock Rate = 6.144 MHz)
- NRZ Resistive DAC
- First integrator chopped at $f_s/24$
- ISSCC 2016

Performance Summary and Comparison

	1-bit + FIR	1-bit ADC	1-bit	4-bit
	+ chopping	+ FIR DAC	ADC	ADC
BW (kHz)	24	24	24	24
Feature Size (nm)	180	180	180	180
Supply (V)	1.8	1.8	1.8	1.8
Power (µW)	280	280	110	121
Peak SNDR (dB)	98.5	98.2	88	90.8
DR (dB)	103.6	103	91.7	88
SFDR (dB)	107.6	106	95	94
FoM _{SNDR} (fJ/lvl)	85	88	111	89
FoM _{Schreier} (dB)	177.8	177.5	171.4	173.7 ₉₃

Conclusions

FIR feedback

- ✓ Simple 1-bit ADC
- ✓ Reduced ADC power and area
- ✓ Simplified clock distribution
- ✓ Inherently linear DAC → No DEM
- \checkmark Relaxes integrator linearity and jitter requirements
- \checkmark Chopping for free
- ✓ Combines benefits of 1-bit and multi-bit operation
- ✓ Highest Schreier FoM reported