

# Mixed-signal technologies for ultrawide band signal processing systems

GABRIELE MANGANARC



# Agenda

- Motivation / Applications
- Process Technology
- ADC architectures
- Integration
- Signal Chain Linearization
- Conclusion





**Motivation / Applications** 

# Application drivers: mobility, pervasive computing, ...





# "We wanted flying cars, instead we got 140 characters" – Founders Fund (P. Thiel)





#### Wireless communication: 5G







# Wireless communication: 5G

7





# **Densification/Range Extension**



**O**TEKTELIC





8 B. Bangerter et al., "Networks and devices for the 5G era", IEEE Communication Magazine, 2014

# **Massive MIMO / Beamforming**







9 W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular...", IEEE Communication Magazine, 20 44 of WHAT'S POSSIBLE\*

# The \$\$ stuff that does not want to scale: duplexer & other filters





# An actual BTS's duplexer





# An actual power amplifier







# Phased array system evolution



13









# **Process Technology**

#### Moore's law





15

# Higher digital power efficiency, but not (much) higher device speed!



Source: W.M.Holt, "Moore's Law: A path going forward", ISSCC 2016



# Application pull: Wireless Infrastructure (BTS) bandwidth demand versus MS CMOS capability



G. Manganaro, "Emerging data converter architectures and techniques," IEEE CICC, 2018.

# Die interconnects are the biggest bottleneck





AHEAD OF WHAT'S POSSIBLE™

# Electromigration

 $J_{max}(T)$  compared to  $J_{max}(T_{ref} = 25^{\circ}C)$  [1]



The maximum permissible current density of an aluminum metallization, calculated at e.g. 25°C, is reduced significantly when the temperature of the interconnect rises



# **Device Aging**





Source: Fraunhofer Institute for Integrated Circuits

# **Complexity drives development cost**



Source: International Business Strategies, Inc 2013 report

Hardware Design Cost

Design cost by chip component size in nm, \$m



AHEAD OF WHAT'S POSSIBLE"

21



# **ADC** architectures

# Technology progression: 12b/14b High Speed (HS) ADC progression



ANALOG DEVICES

G. Manganaro, "Emerging data converter architectures and techniques," IEEE CICC, 2018.

# Analog/Digital composition for HS ADC cores



2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Release to Market

| 14b/125MSPS  | 16b/250MSPS  | 14b/1.25GSPS | 14b/3GSPS | 12b/10GSPS |
|--------------|--------------|--------------|-----------|------------|
| 0.35u BiCMOS | 0.18u BiCMOS | 65nm CMOS    | 28nm CMOS | 28nm CMOS  |
| 85%A/15%D    | 80%A/20%D    | 75%A/25%D    | 70%A/30%D | 60%A/40%D  |



# Architectures (no one fits all): ADC "Aperture plot" (i.e. Bandwidth vs. Dyn Range or sample rate vs. resolution)



Created using data available at https://web.stanford.edu/~murmann/adcsurvey.html (Prof. B. Murmann's ADC performance survey)

### ADI's ADC architectures: one cannot fit all





# 12b/10GSPS ADC: 8x interleaved Analog to Digital converter



27

F<sub>IN</sub> (GHz) S. Devarajan, et al., "A 12b 10GS/s Interleaved Pipeline ADC in 28nm CMOS Technology", IEEE J. Solid-State Circuits, pp. 3204-3218, Dec 2017 ANALOG

AHEAD OF WHAT'S POSSIBLE"

# **CT pipelined ADCs**



<sup>3360μm</sup> H. Shibata, et al., "A 9GS/s 1.125GHz BW oversampling continuous-time pipeline ADC achieving -164 dBFS/Hz NSD", IEEE J. Solid-State Circuits, pp. 3219-3234, Dec 2017

# VCOADC

- ► Variable gain V/I
- Reconfigurable
  - *f<sub>s</sub>*=1.1-2.2Gsps
  - BW=10-20-50MHz
  - NSD=-147 to -154dBFS
  - Power=7-30mW/adc
- ► SFDR > 85dBc
- Calibration:
  - Background calibration of replica ADC signal path.
  - All calibration engine logic included with ADC IP, no uController required
  - Continuous calibration or on-demand
  - Calibration period=15-30uS
- Manual layout for high-speed signal path, P&R for calibration engine only





<sup>29</sup>G. Taylor and I. Galton, "A mostly digital variable rate continuous-time delta-sigma modulator ADC", IEEE J. Solid-State Circuits, pp.2634-2646, Dec 2010 AHEAD OF WHAT'S POSSIBLE

# Why VCOADC?

- Area is 5-10x smaller than other ADCs with similar specs
- CT front end-> drive-able
- Mostly digital->Scalable







Integrated Systems: SoCs/SiPs with Mixed-Signal + Embedded DSP Capability

# quad Tx / quad-dual Rx fully integrated wideband MxFE



#### FUNCTIONAL DIAGRAM

AHEAD OF WHAT'S POSSIBLE™

Tx1/2

C34==

C34++

# Flip Chip Chip Scale Package BGA



Flip Chip CSP BGA





# Flip Chip – Thermally Enhanced BGA





34





# **3D Packaging**





#### mmWave front-end modules



#### Die-On-Carrier (DOC) "Die-like" RF Product





Bumped Flip Chip (SMT Assembly)



#### Interposer Systems in a Package



TSMC's CoWoS® (Chip-on-Wafer-on-Substrate) Services, https://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm

38 P. Gupta and S. S. Iyer, "Goodbye, Motherboard. Hello, Silicon-Interconnect Fabric", IEEE Spectrum, Sept 2019





Algorithmic Capability: Systemlevel Linearization



























# Fs=6GSPS Lab Data: HD2 & HD3 correction







47 N. Rakuljic et al., "In-situ nonlinear calibration of a RF signal chain", IEEE ISCAS 2018, Florence, Italy, 2018

# Fs=6GSPS Lab Data: SNR and SFDR





# Wi-Fi 6 (802.11AX) Test Signal (500M)

- Test signal shown at right
- ► Before LinearX<sup>™</sup> correction in blue
- After LinearX<sup>™</sup> correction in red (tonal spurs are common to both)
- Training was done using a different wideband training signal spanning 400 – 600M







# Conclusion

### Conclusion

A comprehensive approach is required to address the multiple important design constraints:

- Heat removal
- Devices' reliability and aging
- Process technology
- Packaging
- Data interfaces
- Performance/band/power consumption
- Area/costs



#### **QUESTIONS!?**



