Integrated True-Time-Delay based Large-Scale Arrays for Spatially Diverse Applications

PI: Subhanshu Gupta

Graduate student(s): Erfan Ghaderi, Chase Puglisi, Shrestha Bansal, Qiuyan Xu

School of Elec. Engineering and Comp. Sci.

Washington State University, Pullman – WA

https://labs.wsu.edu/systems-on-chip

Oct 18, 2019

SSCS/MS Seminar

Outline

Motivation

- Background
- Proposed Discrete-Time Delay-Compensation
 - True-time-delay beamforming for wide modulated BW and large arrays
 - Spatial interference cancellation with wideband NULL
- Conclusions

Motivation

Communications

Key challenges

- Network of CubeSat crosslinks
- Swarm-to-ground communication
- Network Scaling
- Local ranging up to 100 km
- Low-power edge computing

- mmWave links among CubeSats
 - True-time-delay beamforming (ongoing)
 - Single/multiple spatial interference cancellation → near-far problem
 - Closed-loop DoA estimation (ongoing)

Motivation

Spatial Interference Cancellation (SpICa)

SSCS/MS Seminar

Outline

Motivation

Background

Proposed Discrete-Time Delay-Compensation

True-time-delay beamforming for wide modulated BW and large arrays

Spatial interference cancellation with wideband NULL

Conclusions

RF/Analog Phase Shift Beamforming

- ✤Valid phase shift approximation for narrowband signal
- Large antenna arrays suffer from lower normalized 3dB bandwidth (NBW_{3dB})
- Bandpass filtering results in signal distortion and performance degradation
- Easy to implement

6

Leakage in Phase-Shifter based Phased Arrays

- Cancellation of undesired signal (S_{UD})
- Leakage is dependent on: Bandwidth (BW), Center frequency (fc), Number of elements, (N).

Apps	f _c (GHz)	BW (MHz)	N	S _{UD} Max Conversion Gain in PS-Based SpICa (dB)
802.11ay	60	8640	4	-7.1
802.11ac	5	160	8	-14.0
5G NR n261	28	800	16	-9.1
5G NR n71	0.6	20	32	-5.1

SSCS/MS Seminar

RF TTD Beamforming

- No frequency-dependency in beamforming gain
- Mismatched components at RF
- Power hungry RF active delay implementations
- Femto-second resolutions at mmWave frequencies
- Limited range of delay elements

Digital TTD Beamforming

Higher ADC dynamic range due to no RF/Analog spatial processing

✤N Power hungry ADCs

No frequency-dependency in beamforming gain

TTD vs Phase Shift Wideband Beamforming

♦Phase shift

Variable phase shift for different sub-carriers

♣TTD

• Constant time delay for the entire bandwidth

Cancellation requirements w/ TTD-based arrays

Apps	f _c (GHz)	BW (GHz)	Ν	BB TTD Ir	RF TTD Requirements			
				∆t _{UD} Inter- element Range (ps)	Overall Range (N−1)·∆t _{UD} (ps)	ΔφUD Resolution for 40 dB SpICa (⁰)	∆t _{UD} Resoluti on for 40 dB SpICa (ps)	^{∆t} UD resolution for 40 dB SpICa (ps)
802.11ay	60	8640	4	8.3	25	1.2	0.395	0.053
802.11ac	5	160	8	100.0	700	0.9	15.17	0.48
5G NR n261	28	800	16	17.9	268	0.6	2.153	0.060
5G NR n71	0.6	20	32	833.3	25833	0.4	60.97	2.00

TTD requirement in baseband is significantly relaxed

♦ Needs a resolution of 2ps (BB TTD) instead of 60fs (RF TTD) at 28GHz.

This makes it attractive to do TTD based SpICa at Baseband

SSCS/MS Seminar

Delay Compensation Methods

RF/IF/LO phase shift \rightarrow single frequency

IF Time Delay + RF/LO Phase Shift → multiple frequencies

Outline

- Motivation
- Background

Proposed Discrete-Time Delay-Compensation

- True-time-delay beamforming for wide modulated BW and large arrays
- Spatial interference cancellation with wideband NULL

Conclusions

Discrete-time Delay Compensation Technique

- Discrete time implementation
- Introducing delay in signal path is HARD
- ✤Introduce the delay in the CLOCK PATH
- Digitally controlled delay compensation
- ✤Scalable

Discrete-time Beamforming

Time alignment – delay compensation

- Discrete time implementation
- ✤NOT in the signal path
- Minimum number of ADCs
- Digitally controlled delay compensation
- ✤Scalable

Proposed Discrete-Time BMFRM Arch.

Analog Discrete-time Beamforming

- Non-Uniform-Sampling based switched-capacitor array
- ✤NOT in the signal path
- ✤<u>1 ADC per beam</u>
- Digitally controlled delay compensation
- ✤Scalable
- High clocking power consumption

TCAS-1'19

Discrete-time Delay Compensating Arch.

Clocking

- Delay compensation through phase interpolation
- M-levels of interleaving for covering larger delay ranges

$$f_{s} = 1 / T_{s} = 2 f_{BW}$$

$$\Delta t_{max} = (N-1) \cdot \Delta t|_{\theta=\pm 60}$$

$$= \frac{\sqrt{3}}{2} \cdot (N-1) \cdot \frac{\mathrm{d}}{\lambda_{\mathrm{C}}} \cdot \frac{1}{f_{\mathrm{C}}}$$

Switched-Capacitor Adder (SCA)

Parasitic insensitive topology

- Wide bandwidth OTA with 3mW /200 MHz 3dB BW
- ◆Interference cancellation at the virtual ground node → output swing and linearity requirement easy to meet
- Sampling cap designed to meet thermal noise for 10-bit resolution.
- $\boldsymbol{\diamond}\boldsymbol{\beta}$ is limited when using multiple elements

Clock Generation Unit

Proposed Time Interleaver with 8-bit Phase Interpolator

Example Delay Compensating for 4ns

- States of the timeinterleaver and important phases for delay compensation of 4 ns between consecutive antennas.
- 4-phases with 12.5%
 ON-time from a time interleaver
- Delay of 15ns and resolution of 5ps deliberately chosen for both communication and future initial access modes

Discrete-time Delay Compensating Arch.

Test Setup

SSCS/MS Seminar

Discrete-time Delay Compensating Arch.

Results

SSCS/MS Seminar

Discrete-time Delay Compensating Arch.

Measurement Results (sample)

Discrete-time Delay Compensating Arch.

Comparison w/ state-of-the-art

	RFIC2018	JSSC2017	IMS2015	JSSC2015	RFIC2018	Proposed Work
Approach	LC delay ^a	Gm-C	Delay line ^a	Gm-C	Delta-Sigma	BB True-Time-Delay compensation
# Channel	-	-	-	4	16	4
# Beam	-	-	-	1	4	3
Tech. (nm)	BiCMOS (130)	CMOS (130)	CMOS (130)	CMOS (140)	CMOS (40)	CMOS (65)
VDD (V)	2.5	1.4	1.2	1.5		1.0
Delay Range (ps)	508	1450	400	550	7500	15000
Delay Resolution (ps)	4	10	5	13	500	5
ENOB Log ₂ (Range/Res)	7.0	7.2	6.3	5.4	4	11.6
Frequency Range (MHz)	18000	1900	19000	1500	100	~100 (BB)
Area (mm ²)	5.45	0.6	4	1	0.29	0.57 (active)
Power	285mW ^a	112-364mW ^b	2.6-6mW ^a	450mW ^b	453mW	Analog: 3mW/100MHz Clock: 44mW Total: 47mW

^a just delay implementation, ^bRF-FE included

Discrete-time Delay Compensating Arch.

- ◆Large # of elements, wider BW
 → higher gain-bandwidth OTA
- Example target system: 1500 elements, 3ns scan range, 6-bit resolution, 500MHz BW
- Increasing N increases M and digital power consumption
- Analog beamforming cannot support large array or BW

✤Solution:

Hybrid Beamforming

Discrete-time Delay Compensating Arch.

Hybrid Beamforming

- Dividing the large array into smaller sub-arrays
- Relaxing sub-array's analog requirement
- Energy-efficient compared to digital beamformer
- Higher latency
- Can the TTD-element be used towards decreasing this latency?

SSCS/MS Seminar

Parametric Modeling of TTD Beamformers

✤Parameterize:

- delay between first and last antennas,
- □ fractional bandwidth,
- □ # of interleaving levels,
- □ ADC/PI resolution,
- area and power consumption
- ♦±90° coverage
- ✤M-levels of interleaving
- Conform to Nyquist sampling

Parametric Modeling of TTD Beamformers

R-bit ADC, K-bit phase interpolation

- Larger arrays or moderate to high ADC resolution: Hybrid
- Smaller arrays or lower ADC resolution: Digital

$$\begin{array}{l} \mathsf{P}_{\mathsf{PI,8-bit}} = 44 \text{mW} \ / \ 200 \ \text{MHz} \\ \mathsf{P}_{\mathsf{ADC,5-bit}} = 1.2 \text{mW} \ / \ 250 \ \text{MHz} \\ \mathsf{P}_{\mathsf{OTA}} = 3 \text{mW} \ / 100 \text{MHz} \end{array}$$

Outline

Motivation

Background

Proposed Discrete-Time Delay-Compensation

- True-time-delay beamforming for wide modulated BW and large arrays
- □ Spatial interference cancellation with wideband NULL

Conclusions

Spatial Interference Cancellation

SpICa: Proposed Architecture

 Wideband interference cancellation

- ◆Lower ADC dynamic range → power consumption
- Easy Hadamard Matrix implementation using differential solution

Higher clocking power

SpICa: Concept

Truncated Hadamard Transform Matrix

- Identical to Hadamard
 Transform with first row (all 1's) deleted
- Comprises only +1, -1
- ♦N-1 outputs
- Differential implementation requires NO extra hardware

✤Scalable

SpICa: Circuits

Proposed Multiply-Accumulate (MAC)

Discrete-time Delay Compensating Arch.

Test Setup

MATLAB generated WB signals modeling four antennas

National Instruments PXI-5450E 8-outputs AWG

> 145 MHz analog bandwidth

Rohde & Schwarz FSP40 Spectrum Analyzer

Keysight Infiniivision MSOX3104T Oscilloscope Laptop – offline computation in MATLAB

SSCS/MS Seminar

SpICa: Measurement Results

SpICa for Single-tone Input from 1 to 100MHz for varying Δt_d

SpICa: Measurement Results

Modulated BW Interference Cancellation

SpICa: Comparison with state of the art

		JSSC2017 [3]	ISSCC2019 [4]	RFIC2016 [6]	ISSCC2013 [7]	ISSCC2017 [8]	This Work
# Elements		4 inputs, 4 outputs	4 inputs, 4 outputs	4 input, 1 output	4 inputs, 1 output	8 inputs, 8 outputs	4 inputs, 3 outputs
Tech. (nm)		CMOS 65	CMOS SOI 45	CMOS 65	CMOS 65	CMOS 65	CMOS 65
VDD	$\mathcal{D}(V)$	1.2	NR	1.3-1.5	1.2	1.2	1.0
Resolution (Amp/Phase)		Phase: 6.5-b (3.8°) Amp: 3.9-b	NR	6-b I/Q	Phase: 3-b	14-b	8-b (5ps) Overall delay range: 15ns
BB Power		Not Available (RF+BB implementation)	Not Applicable (RF only implementation)	Not Applicable (RF only implementation)	36mW/40MHz ¹	91mW/350kHz	Analog: 8mW Clock: 44mW Total: 52mW
Area (mm ²)		2.25	23.4	3.8	2.25	3.24	0.9
P _{IN1dB} ² (dBm)		Not Available	-27.3 ³	Not Available	-5 ³	Not Available	4.7 ³
P _{IIP3} ² (dBm)		-29 ^{3, 4, 5}	-15 ^{4,6}	Not Available	0-2.6	Not Available	10.6
Noise Performance		3.4-5.8 dB ⁵ (Noise Figure)	4.3-6.3 dB (Noise Figure)	9.5 dB ⁵ (Noise Figure)	3-6 dB (Noise Figure)	Not Available	330 µV _{rms} (Output-referred)
SpICa Frequency		0.3-0.7GHz	900MHz @28GHz	100MHz @10GHz	40MHz @2.4GHz	350kHz	1-100MHz
NB-SpICa ⁷	Cancellation (dB)	20	50-62	20	< 38	84	46-51
	Range (MHz)	320	900 ⁹	100	40	0.35	99
Modulated	Cancellation (dB)	_	20 ⁸	_	_	Not Available	>35
-spica	BW		500 MHz ¹⁰			135 kHz	80 MHz

Outline

- Motivation
- Background
- Preliminary Work
 - True-time-delay beamforming for wide modulated BW and large arrays
 - Spatial interference cancellation with wideband NULL

Conclusions

Conclusions

- Demonstrated digitally-tunable delay-compensating technique with 5ps resolution and 15ns range for precision beamforming.
- SpICa with wideband null covering 100% fractional BW
- Frequency-independent gain over a bandwidth of 100MHz (extended in ongoing works to 500MHz) with <50mW power consumption.

Future work will

- Demonstrate discrete-time delay compensating technique for wide modulated bandwidths
- □ Low-latency initial access
- mmWave Testbed with closed-loop optimization for TTD arrays

Acknowledgements

- Graduate students at Systems-on-Chip and ARMAG Lab
- ✤National Science Foundation (Award #1705026) for partial support
- Dr. Deuk Heo at WSU, Dr. Sudip Shekhar at UBC, Dr. Akbar Sayeed at UWisc
- Dr. Danijela Cabric, Han Yan, and Veljko at UCLA
- MOSIS and CMC for partial support in chip fabrication
- Xilinx for hardware donation
- Keysight and National Instruments for testbed support through university loan programs
- Cadence and Mentor for CAD support