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Disclaimer

• The opinions expressed in this lecture are my own 
and do not necessarily reflect the views of my 
employer, Intel Corp. 

• The data presented in this lecture was collected and 
published during my employment with AMD & 
GLOBALFOUNDRIES
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Brief history of semiconductor devices

• Dec 1947 invention of the 
point contact transistor by 
Shockley, Bardeen and Brattain 
at Bell Labs

• Bipolar transistor went through 
various process improvements 
in the following years

• MOSFET was proposed in 1925 by Lilienfeld 
and first demonstrated by Atalla and Kahng at 
Bell Labs in 1959

• In 1958 Kilby at TI invented the first integrated 
circuit which was followed shortly after by 
Noyce at Fairchild with a “true” monolithic IC 
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Motivation

• MOS Technologies 
successfully scaled since 
~1970 following scaling 
laws introduced 
by R. Dennard 

• Feature sizes reduced 
from 10m to <100nm

• Equivalent Oxide 
thickness scaled to ~1nm 

• Dopant concentration 
increased for gate control 

• Reduction in feature size 
and introduction of new 
materials presented 
challenges for 
characterization and 
modeling of advanced 
technology nodes
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Critical FEOL reliability challenges 
accompanying CMOS scaling 

• Ionic contamination of the gate dielectric caused by 
alkali metals (Na, K)
• Reducing contamination from tooling, process and handling

• Hot carrier challenges
• Focusing on implant process and introduction of lightly doped 

drain (LDD) process

• Gate oxide scaling limitation
• Reexamining the time dependent dielectric breakdown (TDDB) 

model leading to the introduction of the power law model  

• Bias Temperature Instability
• Minimizing impact of process (nitridation on NBTI, IL/HK 

thickness for PBTI in MG/HK technologies) and introduction of 
time resolved characterization 

• Metal Gate / High-k reliability
• Industry wide effort including research consortia's to address 

fundamental process and reliability challenges  
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Outline

• Introduction 

• Discrete device reliability
– TDDB mechanism

– BTI characterization

– Summary

• Circuit reliability 
– Ring oscillator degradation

– Summary

• Outlook 
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Dielectric breakdown in MOS devices

• Definition: Dielectric 
breakdown occurred  
when the dielectric has 
lost its insulating property

• Losing insulating property 
in a dielectric leads to 
a current increase when 
connected to a voltage 
source

• Breakdown is a statistical 
process and failure times 
are modeled using 
Weibull statistic (, t63%)
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Bias Temperature Instability (BTI) CMOS devices

• The introduction of MG/HK into CMOS technologies added 
PBTI in nFETs as emerging device reliability mechanism in 
addition to NBTI in pFETs

• The introduction of MG/HK
did not require an adaption 
in BTI characterization 
methodology

A. Kerber et al.  IEEE TED, Vol. 55, No. 11, pp. 3175-3183, 2008. 
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BTI recovery

• BTI recovers when the stress bias is removed

• NBTI and PBTI show same qualitative features

• What is the impact of recovery on logic CMOS circuit 
degradation?
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Method to assess reliability

1

11 1 

+









=

+

n

VBD

VRR
TBD

n
n

CVS

CVS

( )
( ) n

VRS

nm

VRS

nVRSVRST
RR

V

nm

A
VRRV

+

+
=

max
max

1
,( ) m

CVS

n

CVSCVSCVST VtAVtV = ,

TDDB

BTI

A. Kerber et al., Microelectronics Reliability, 2007.

A. Kerber et al., IEEE EDL, 2009. 

timet = 0

Vstress

V

t
Vstress

timet = 0

16



Fast BTI characterization
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Outline

• Introduction 

• Discrete device reliability
• TDDB mechanism

• BTI characterization

• Summary

• Circuit reliability 
• Ring oscillator degradation

• Summary

• Outlook 
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TDDB Figure of Merit

• Poor correlation between failure time and CET

• Strong correlation between t63% and gate leakage current

➔ t63% versus Jg used as FOM for process development 
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TDDB distribution and voltage dependence

• MG/HK TDDB follows Poisson scaling / vertical area scaling 
– Increase in Weibull slope with increasing gate area

• Voltage dependence well described by power law model 
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Modeling TDDB failure distribution in core 
MG/HK devices

• Competing degradation of a dual layer gate stack
– Failure distribution well described 

by applying the percolation concept 
with the assumption of different 
generation rates for interface and 
high-k layer

• Progressive failure
– Since failure distributions are similar to ultra-thin SiON / 

poly-Si stacks, it is feasible that a similar concept applies to 
MG HK

• Competing degradation of a dual layer gate stack + 
progressive wear out

T. Nigam et al., IRPS, 2009.

S. Sahhaf et al., TED, pg. 1424, 2009.

J. Sune et al., IEDM, pg. 230, 2010.
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BTI mechanism in CMOS devices

• NBTI leads to build up of 
positive charge

• Interface states, hole traps 
in the interlayer and high-k 
layer are contributors

A. Kerber et al.  IEEE EDL, Vol. 24, No. 2, pp. 87-89, 2003. 

NBTI in pFETs PBTI in nFETs 

• PBTI leads to a build up of 

negative charge 

• A defect band positioned in 

energy above the Si-conduction 

band edge is the primary cause 

and attributed to oxygen 

vacancies

Band diagrams after R. G. Southwick III, et al., 

IEEE TDMR, vol. 11, pp. 236-243, 2011.
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BTI recovery effects using 
stress and sense method 

• NBTI in conventional and PBTI in MG/HK devices show log(t) 
like recovery behavior 
➔ recovery studies need do cover many decades in time
➔ characterization focused to minimize sense duration

H. Reisinger et al., IRPS, pg. 448, 2006.
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xBTI degradation in MG/HK devices

• Fast (2ms) & ultra-fast (10s) xBTI degradation follows power law time 
evolution

• For NBTI 2ms & 10s degradation merge at long stress times

• For PBTI negligible difference between 2ms & 10s 
➔ fast versus ultra-fast characterization does not impact long term 
projection
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PBTI scaling in nMOS 

• HfO2 thickness dependence for PBTI consistent 
with bulk-charging model → Vt ~ (tHfO2)

2

• High-k thickness scaling an effective means to 
reduce PBTI
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Planar versus FinFET xBTI comparison 

• Consistent trend throughout the industry

• Substantial Reduction in nMOS PBTI ➔ FinFETs operating at 
lower field

• Enhanced pMOS NBTI ➔ Change in crystal orientation or 
Roughness induced by Fin formation
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BTI and its implication on circuits

• Voltage and time evolution of xBTI is frequently 
modeled using power law dependences

∆𝑉𝑇 𝑜𝑟 ∆𝐼𝑑𝑠𝑎𝑡= 𝐴 𝑡𝑟𝑒𝑓 , 𝑉𝑟𝑒𝑓

𝑡

𝑡𝑟𝑒𝑓

𝑛
𝑉

𝑉𝑟𝑒𝑓

𝑚

• In small devices BTI becomes a stochastic 
process 

• Circuit implication:
• For logic circuits like RO the mean degradation 

∆𝑉𝑇 𝑜𝑟 ∆𝐼𝑑𝑠𝑎𝑡  remains most relevant since the 
circuit is comprised of several stages

• For SRAM circuits stochastic variations 𝜎 ∆𝑉𝑇  in 
addition to mean degradation ∆𝑉𝑇  are important 
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• VT time traces used to extract super-
linear voltage (m) and sub-linear time 
evolution (n)

• Typical n values: 0.15<n<0.25

• 3.5<m<6 for NBTI and 5<m<9 for PBTI

• Typical Ea values: 0.1 < Ea <0.2
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Discrete device stress modes to 
mimic circuit operation

• AC stress alters between stress and GND

• INV stress mimics relaxation in SRAM and 
inverter ROs

after Barry P. Linder, et al., IEEE IIRW, pg.1-6, 2011. 
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Frequency  dependence of discrete 
device BTI

• No frequency dependence for BTI from sub-Hz to 10kHz for 
RMG FinFET and GF planar MG/HK devices

– Remaining NBTI fraction: ~ 40% to ~60% 

– Remaining PBTI fraction: ~70% to ~90%

• No impact of stress mode on NBTI recovery while PBTI 
shows enhanced de-trapping for inverter stress
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Stochastic BTI process
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Test structure innovation to 
assess stochastic BTI
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Modeling of stochastic BTI process

• How is BTI induced VT in small devices 
described?

• Voltage, time and temperature dependence of the 
mean degradation is model as for large devices

• Percentile scaling is the main focus for stochastic 
BTI modeling

– Popular choices are normal distribution, compound Poisson 
process (S. Rauch, TDMR 2002), Gamma functions (B. 
Kaczer, IRPS 2010 ), … 

percentiletemptimevoltstressuse AFAFAFAFVtVt =
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How to validate stochastic BTI models 

• Since most stochastic
models describe the 
average behavior 
equally, large sample
size is required to 
validate the tail   

• Extending discrete 
device level testing
beyond 3 requires
innovation 

– Shared gate devices

– Variability test chip
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Time-zero RTN and its impact on 
stochastic BTI

• RTN in scaled devices leads to random voltage shifts in 
+ or – negative direction

• CDF well reproduce by MC simulations with a =1.5mV 
and RTN=9mV with adjusted PRTN, P+ and P- 

• RTN can dominate stochastic BTI for small degradation
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Impact of RTN on BTI induced V

• RTN causes significant 
t0 skew in V 
distribution and remains 
a contributor for small 
BTI degradation

• At technology relevant 
BTI degradation RTN 
becomes a diminishing 
factor-0.10 -0.05 0.00
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• RTN impact well captured by MC simulations
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Time-zero VT and BTI induced VT 
variance comparison

• Local VT and BTI induced VT mismatch scale inversely with gate area

• Improved VT mismatch for FinFETs due to reduced RDF compared to 
planar bulk and PDSOI devices

• Variance of large area devices across wafer limited by process variation 
for time-zero VT and BTI induced VT 
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Discrete device reliability:
Summary

• TDDB failure distributions in MG/HK Devices follows 
Poisson scaling and is successfully described by 
dual layer percolation model

• AC effects are critical for modeling logic circuits 
aging due to xBTI

• Decoupling RTN from xBTI and comprehending VT 
to VT correlations important for the development of 
stochastic degradation models for SRAM devices 

• Self-heating becoming a growing concern for scaled 
technology nodes
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Outline
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• Discrete device reliability
• TDDB mechanism

• BTI characterization
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• Circuit reliability 
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• Outlook 
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Time-resolved RO characterization

• Sub-ms sense intervals 
achieved via synchronized 
switching of power supply 
units (VDD RO, VDD divider, 
enable pin)

• RO frequency measured 
with digital scope using 
“jitter” function 

• Degradation determined at 
nominal supply voltage

• Supply currents recorded 
to study dielectric 
breakdown 
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RO degradation based on CVS

• Static (DC) stress mode leading to higher frequency 
degradation compared to dynamic (AC) stress

• RO degradation in dynamic mode show negligible 
frequency dependence from GHz to MHz
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• For poly-Si/SiON, fast RO degradation reveals HCI contribution to 
frequency degradation causing  an increase in time-slope at high stress 
voltage

• For RMG bulk FinFET, the model parameter for RO degradation are 
consistent with device level NBTI and PBTI (n~0.25, VAE=7.5)

Kinetic RO degradation model 
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Evidence of Self-Heating in SOI FinFETs

• Bulk-FinFETs at short stress time show same 
degradation for 13 and 101 stage RO 

• SOI-FinFETs at short stress time show ~1.75x 
higher degradation ➔ temperature rise of ~30C at 
high stress condition
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RO degradation and BD 
utilizing VRS

• Dielectric breakdown of ROs correlates very well with nFET TDDB 
based on supply current fail criteria

• Supply current increase typically occurs prior to erratic frequency 
changes making it a more robust breakdown monitor
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RO VBD Poisson scaling

• RO VBD follows Poisson scaling of dielectric breakdown
– Dynamic stress shows ~100mV higher VBD compared to static stress

• Largest circuit area deviates to higher breakdown voltage 
due to IR since stress currents >10mA
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Circuit reliability:
Summary

• Frequency independence for BTI confirmed for 
frequencies ranging from 0.1Hz to 3GHz using RO 
circuits and discrete devices

• At short stress time and elevated junction 
temperature BTI dominates RO aging

• Hot Carrier contributions can be observed at longer 
stress times at high stress voltage and reduced 
junction temperature
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Outlook

• Fundamentals of TDDB and BTI are not expected to 
alter in future MG/HK technology nodes (FinFETs, 
FDSOI, gate-all-around)

• With further reducing dimension stochastic variations 
remain in the focus

• Time-zero and aging induced variation are in competition

• Gate-to-contact TDDB is becoming an emerging failure 
mode and modeling / comprehending variation is key 

• Self-heating is a growing concern in particular when 
moving to gate-all-around

• Device to circuit correlations are critical to establish 
performance and reliability trade-offs 
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