

Ultra-Low-Power Integrated Circuits and Physiochemical Sensors for Next-Generation "Unawearables"

> Patrick Mercier <u>University of California</u>, San Diego

GROWTH OF THE IOT

THE NUMBER OF CONNECTED DEVICES WILL EXCEED 50 BILLION BY 2020

Wearables: an exciting high-growth market

UCSD

Why aren't we there now?

Size & Usability:

Need to develop sensors that are small & seamlessly integrated into daily life

Battery Life:

Need ultra-low-power and/or energy harvesting to minimize re-charging

Utility:

Need to develop sensors that are <u>actually useful</u>

Mission:

Address these issues through innovative transdisciplinary research

Wearables Roadmap

Why aren't we there now?

Size & Usability:

Need to develop sensors that are small & seamlessly integrated into daily life

Battery Life:

Need ultra-low-power and/or energy harvesting to minimize re-charging

Utility:

Need to develop sensors that are <u>actually useful</u>

Mission:

Address these issues through innovative transdisciplinary research

Physical attributes

- Motion (e.g., steps)
- Temperature
- Respiration

7

Electrical attributes

- ECG (heart)
- EEG (brain)
- EMG (muscles)

Electrophysiology today

Wet electrodes:

- Inconvenient
- Irritating

UCSD

Good performance

Non-contact electrodes:

- Very convenient (can integrate into textiles)
- Opportunities for large number of channels
- Severe motion artifacts

Cognionics

Hardware + software co-design for motion artifact reduction

Naïve solution: Measure electrode motion via accelerometer

JCSD

Problem: measures absolute motion; not motion w.r.t. body

Proposed solution:

Dynamically measure change in electrode impedance via a dual-channel electrode

Experimental results:

Up to 76% reduction of artifacts

Fully-on-chip Wireless Neural Interfacing Devices

ADVANTAGES:

- Fully-integrated: no wires, batteries, or any other external components
- Fully encapsulated with biocompatible material: no adverse reactions with the brain
- Microchip integration means upwards of 100s of channels per chip
- Completely modular design
- Possible to place *many* chips in the brain for largescale recording/stimulation

Adiabatic current stimulator:

- 6x more efficient than conventional approaches
- >2x more efficient than prior work that use large off-chip inductors

S. Ha et al., VLSI'15 / TBioCAS'18

Strain sensing for detecting risk of fibrosis in head+neck cancer patients

Machine learning for classification

84% accurate model

^t (S) J. Ramirez et al., ACS Nano, 2018

UCSD

Wearable sensing opportunities

Physical attributes

- Motion (e.g., steps)
- Temperature
- Respiration
- Blood pressure

Electrical attributes

- ECG (heart)
- EEG (brain)
- EMG (muscles)

Most of the wearables market today

Biochemical attributes

- Glucose
- Electrolytes
- Alcohol
- Lactate
- Many more!

Opportunity!

Biochemical Sensing Today

Conventional lab testing

- Expensive, painful, time consuming/inconvenient
- Very infrequent spot measurements

Point-of-care devices

- Often still needs access to blood (invasive)
- Infrequent spot measurements (subsampling)

Research need: non-invasive, continuous measurement devices

Example: lactate monitoring for athletes

Staying below the "lactate threshold" important for endurance training

Aerobic respiration

Marathon runner Unlimited time (15 Km)

(m) ©2000 How Stuff Wor

Current state-of-the-art testing method:

Non-invasive and/or continuous sensing is required

Hybrid physiochemical & electrophysiological sensing

JCSI

First demonstration of simultaneous chemical+electrophysiological sensing in a wearable patch

sensing in a wearable patch

S. Imani et al., Nature Communications, 2016

Hybrid physiochemical/electrophysiological sensor operation

UCSD

Current (JuA)

S. Imani et al., Nature Communications, 2016

Non-invasive wearable alcohol sensor

Electrochemical analysis after iontophoresis: To induce sweating \rightarrow capture ethanol at the skin surface

Measurement procedure:

Epidermal prototype:

J. Kim et al., ACS Sensors, 2016

UCSD

Non-invasive dual-fluid glucose/alcohol sensing

J. Kim et al., Advanced Science, 2018

A wireless saliva sensor in a mouthguard

Health applications

Measure Uric Acid for Hyperuricemia

Startup company: TRAC

Fitness applications

Measure Lactate for Stress / Exertion

J. Kim et al., Biosensors & Bioelectronics, 2015

Why aren't we there now?

Size & Usability:

Need to develop sensors that are small & seamlessly integrated into daily life

Battery Life:

Need ultra-low-power and/or energy harvesting to minimize re-charging

Utility:

Need to develop sensors that are <u>actually useful</u>

Mission:

Address these issues through innovative transdisciplinary research

Major limiter: battery size / battery life

Power breakdown:

Research goal: Minimize power of load circuits (especially RF), and perform energy harvesting

G. Burra et al., ULP Short-Range Radios (Mercier & Chandrakasan, Eds.), Springer'15

Near-zero-power RF transmitter

UCSD

Ultra-Low-Power Voltage Reference Generator

A 420fW self-regulated 3T voltage reference generator

A 3.4pW 5T current reference generator

Normalized I_{REF}

UCSD

pW relaxation oscillator

pW current reference

UCSD

pW relaxation oscillator: 65nm test chip results

H. Wang et al., Sci. Rep.'17

pW temperature sensor

29

UCSD

Temperature sensor measurement results

Sub-nW SAR ADC

H. Wang et al., JSSC'18

Power Management Unit

- □ 1.8V battery to 0.6V load conversion via a 3:1 Dickson topology
- □ Minimized leakage power and high SSL metric
- □ Non-overlapping clock reduces quiescent power by 21%
- □ Peak efficiency: 96.8% at 100nA, 10Hz

H. Wang et al., JSSC'18

A 5.5nW Wireless Ion-Sensing System

Average power consumption: 5.5nW

H. Wang et al., JSSC'18

Power-saving receiver approach: wake-up receivers

Conventional "wake-on" radio

Wake-up receiver (WuRX)

Courtesy of Troy Olsson (DARPA)

Near-zero power WuRXs can greatly extend lifetime in lowaverage throughput scenarios

Wake-up receiver requirements:

- Low-power (always on)
- Good sensitivity (ideally comparable to main radio for good network coverage)
- Reasonable latency (depends on application)
- Robustness to interferers (may operate in congested environments)

Conventional WuRX Architectures

IF/uncertain-IF:

Problem: Power hungry LO generation and IF amplification

Direct envelope detection:

Impedance transformation LNA network Table Comparator Problems:
Moderate RF/conversion gain \rightarrow poor sensitivity
Low-Q front-end
 \rightarrow poor interferer tolerance

Challenge: achieving both high gain and low power

A nW Wake-up Receiver

JCSD

High *R*_{in} ED supports high passive gain front-end w/ high-*Q* filtering at low power

 \rightarrow 25dB gain \rightarrow 1:316 impedance transformation ratio

Requirements:

- 1. High ED R_{in} (>15.8k Ω)
- 2. Large L_s/L_p ratio (=316)
- 3. Small, well-controlled $k (\leq 0.04)$

Implementation options:

- 1. Lumped L_p/L_s
 - \rightarrow Large *L*, but poor-defined *k*
- 2. Distributed L_p/L_s
 - \rightarrow Well-controlled k, but small L

<u>Challenge</u>: implement large L_p/L_s ratio with low and well-controlled k

Transformer Filter

Active Envelope Detector & Digital Baseband

Active-inductor bias improves SNR by 3-25dB over conventional common-source

Optimal 16b code improves SNR by 4dB at ~1nW power cost

WuRX Measurement Results

- Power consumption: 4.5nW
- Sensitivity: -69dBm
- Wake-up latency: 53ms

Improving WuRX sensitivity

- Key limiter in previous work: ED noise
- Idea: replace active ED with passive ED \rightarrow eliminates 1/f noise

A 6.1nW Wake-up Radio with -80.5dBm Sensitivity

Challenges:

- 1. Not standard compliant
- 2. Low-frequency operation @ FM band
- 3. Susceptible to interferers

Susceptible to interferers.

P.-H. Wang et al., SSCL, 2018

An Interference-Robust BLE-Compliant Wake-up Receiver

40

30

20

50

Sensitivity: -85dBm @ 220µW
 27.5dB better than prior-art
 Latency: 200µs-to-1.47ms
 SIR: at least -60dB SIR (limited by measurement setup)

P.-H. Wang et al., ISSCC'19

-70

-50

-40

-30

-20

-10

Frequency offset to carrier frequency (MHz)

Magnetic Human Body Communication

Ultra-low-power radios & spectral efficiency

No PSK-capable receivers under 1mW

Why? Because PLLs with sufficient phase noise require > 1mW at 2.4GHz

All low power radios designs utilize OOK or FSK modulation → extremely spectrally inefficient

Research Need: Low-power high performance PLLs

Sub-Sampling PLLs: Low-Power and High-Performance

Advantage: No divider leads to lower in-band noise, lower power

Challenges:

- 1. Periodic connection between SSPD cap and VCO resonator yields spurs
- 2. Charge pump ripple attenuated only by 1st order RC filter

Active mixer-adopted sub-sampling (AMASS) PLL

- Sub-sampling phase detector switches essentially perform passive mixing between LO and pulse generator
- Main idea: perform active mixing instead for improved isolation of VCO and more ripple attenuation
 - Additionally, pulse active mixer to reduce power (by ~50x)

48

AMASS-PLL: Measurement Results

Harvesting energy from human perspiration via lactate biofuel cells

Watch "OFF"

J. Wenzhao et al., J. Mat. Chem., 2014

1.2

0.8.

0.4.

0.

0.0

Voltage/ V

Increasing BFC power density

A.J. Bandodkar et al., Energy & Environmental Science, 2017

50

Power Density/ mW cm⁻²

Small and efficient energy harvesting electronics

28nm FDSOI test chip

S.S. Amin et al., ISSCC/JSSC, 2018

- Multi-input maximum power point tracking AND multi-output regulation, all with a single inductor
- 89% peak efficiency
- >70% efficiency from 1µW-60mW

Self-powered glucose sensing

A.F. Yeknami et al., ISSCC/JSSC, 2018

Energy-Efficient Microsystems Group Other Research Topics

and the second second

Magnetic Human Body Communication

-10

-20

-30

-40

-50

-60

-70

-80

0

Path Gain [dB]

J. Park et al., EMBC'15 / ISSCC'19

High-Dynamic Range Bio-Front Ends

off-body

1.5

2

mHBC

>1.000.000x

improvement

2.4GHz

0.5

RF

Distance [m]

J. Warchall et al., ISSCC'19

New DC-DC Converters Topologies

VLSI'15

ISSCC'18

ISSCC'19

Wireless Power Transfer

T. Kan et al., TPEL'18

T. Kan et al., TPEL'18

Conclusions

- Next generation IoT, mobile, and "unawearable" devices require:
 - New sensors and sensing techniques
 - Small form factors
 - Long/infinite battery life
- Meet these needs through:

Application Engineering	 Sample rate adjustment to fit application needs New sensor development 	
Architectural Innovations	 New sensor transduction/digitization techniques New power conversion circuit topologies 	Exciting new "unawearable"
New Circuit Techniques	 Topologically-defined "digitally-replaced analog" Deep subthreshold DTMOS 	

Acknowledgements

National Institute of **Biomedical Imaging** and Bioengineering

ALL DIEG

FOUNDATION

