RF Harmonic Oscillators Integrated in Silicon Technologies

Pietro Andreani Dept. of Electrical and Information Technology (EIT) Lund University, Sweden

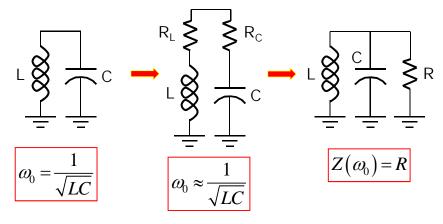
SSCS Distinguished Lecture

Qualcomm, S. Diego, California Friday, 15 Feb. 2019

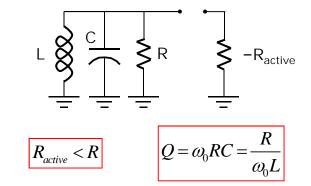
Overview

- Popular harmonic oscillators
 - Phase noise
- Architectures for low 1/f² and/or 1/f³ phase noise
- □ Series-resonance oscillator
- Design techniques for very wide frequency tuning range RF CMOS VCOs

SSCS

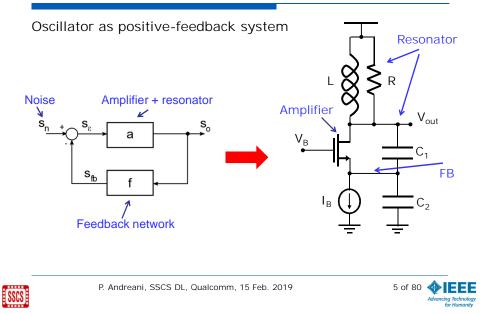

SSCS

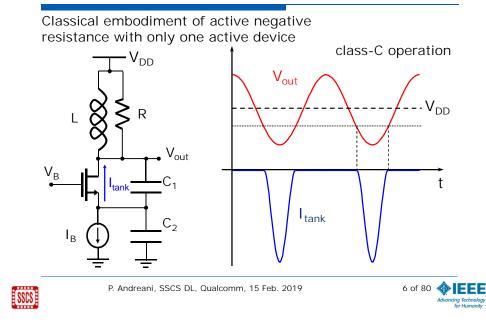
P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

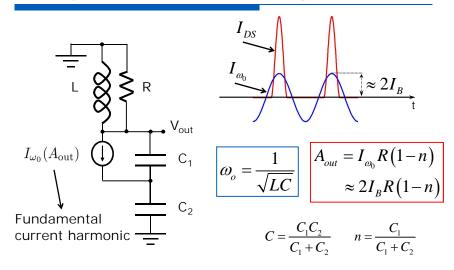

LC resonator

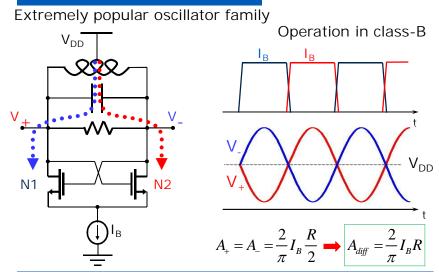
We begin with an inductor-capacitor resonator

Building a harmonic oscillator


Tank losses are compensated by an active negative resistance in parallel to the tank

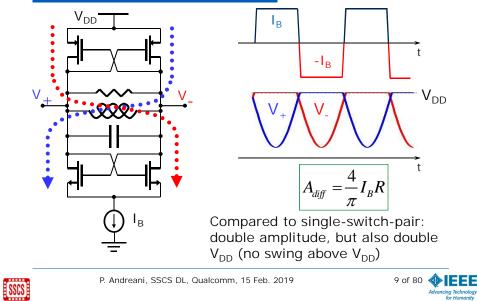



Colpitts oscillator

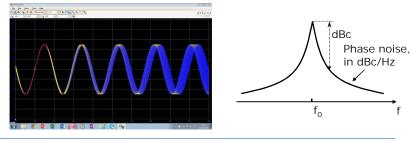

Colpitts oscillator

Analysis with Describing Function

Cross-coupled differential-pair oscillator



SSCS


Class-B with double switch pair

P. Andreani, SSCS DL. Qualcomm, 15 Feb. 2019

Real oscillations

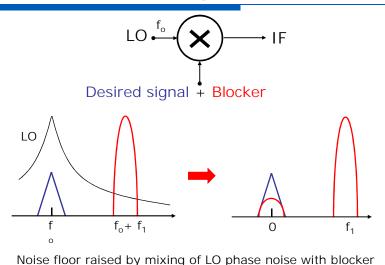
- \Box Phase uncertainty grows with time \rightarrow jitter
 - Caused by various noise sources
- □ Jitter increases without bound in a free-running oscillator
- □ In the frequency domain, the oscillator displays phase noise

Overview

- Popular harmonic oscillators
 - Phase noise
- □ Architectures for low 1/f² and/or 1/f³ phase
- Series-resonance oscillator
- Design techniques for very wide frequency

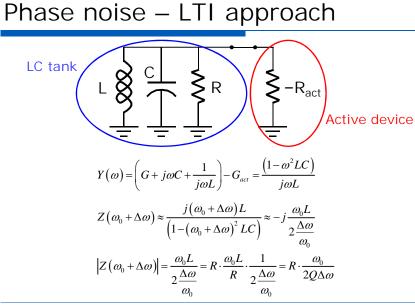
SSCS

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019

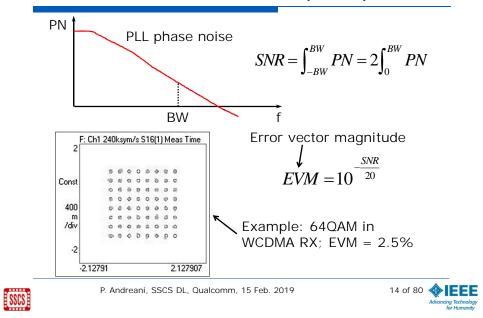


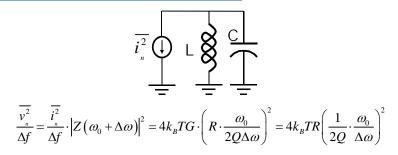
Why bother?

- Phase noise in transceiver is important for at least three reasons:
 - In a receiver, it can downconvert large nearby signals on top of the desired signal
 - □ In a transmitter, it can increase the noise floor in the receive band
 - In both, it can directly corrupt the phase information in the signal
 - Not seldom, the phase noise of the VCO is the bottleneck for the whole radio performance



Reciprocal mixing



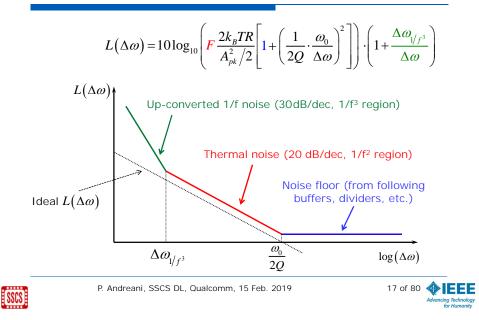

P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

Phase noise and SNR (EVM)

Phase noise from tank losses

- Both amplitude and phase noise, but amplitude noise is rejected
- Thus, phase noise is defined as half the above expression, normalized to the output signal power (in dB below the carrier per Hertz, dBc/Hz):

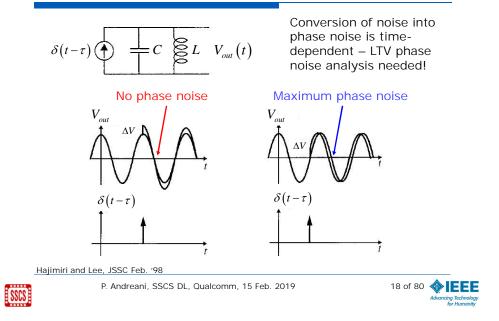
$$L(\Delta\omega) = 10\log_{10}\left(\frac{\overline{v_{n}^{2}}/2}{A_{pk}^{2}/2}\right) = 10\log_{10}\left(\frac{2k_{B}TR}{A_{pk}^{2}/2}\left(\frac{1}{2Q}\cdot\frac{\omega_{0}}{\Delta\omega}\right)^{2}\right)$$



[SSCS]

13 of 80 🚸 EEE

Leeson's equation



Impulse sensitivity function (ISF, Γ)

- Current noise source $i_n(\phi)$ is weighed by associated $\Gamma_{i_n}(\phi)$
 - → effective current noise $i_{n,eff}(\phi) = i_n(\phi) \cdot \Gamma_{i_n}(\phi)$ $(\phi = \omega_0 t)$
- ISF is dimensionless, frequency- and amplitude independent, with period 2π:

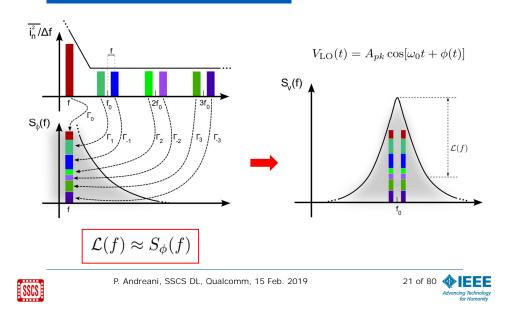
$$\Gamma\left(\phi\right) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n \cos\left(n\phi + \phi_n\right)$$

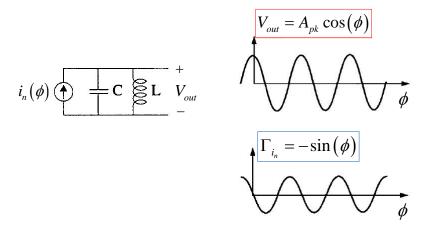
Hajimiri and Lee's theory of phase noise

Phase noise expression

If $i_n(\phi)$ is a (cyclo)stationary white current noise source, its contribution to $1/f^2$ phase noise is

$$L(\Delta \omega) = 10 \log \left(\frac{\overline{i_{n,eff,rms}^2}}{2(CA_{pk})^2 (\Delta \omega)^2} \right)$$
$$i_n(\phi) + C + A_{pk} \cos(\omega t + \phi(t))$$

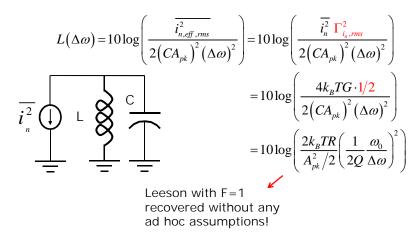




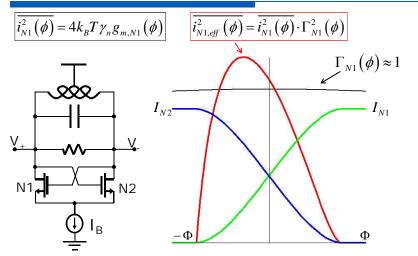
Graphical interpretation

Example of ISF – LC oscillators

Hajimiri and Lee, JSSC Feb. '98; Andreani and Wang, JSSC Nov. '04


SSCS

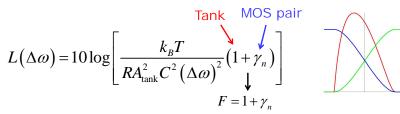
P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019



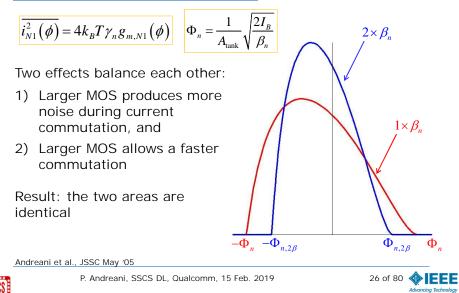
A particularly simple case

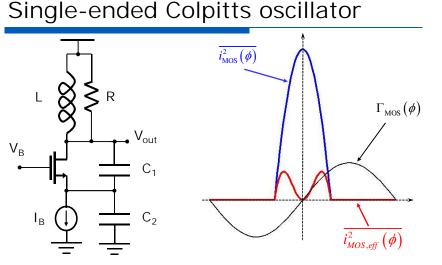
Parallel RLC resonator again – phase noise from tank losses:

Phase noise from MOS pair

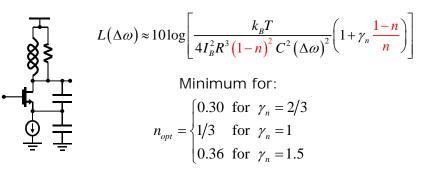

Two commutations in one oscillation period

Total phase noise


- \blacksquare Transistors appear only through channel noise factor γ_n
- \blacksquare Transistor phase noise always proportional to tank noise (60% from tank, 40% from MOS pair, if $\gamma_{\rm n}$ = 2/3)
- This is because: 1) transistor noise is proportional to commutation time, 2) which is inversely proportional to the oscillation amplitude, 3) which is proportional to the tank parallel resistance
- A simple-minded LTI analysis would yield very wrong predictions (i.e., MOS phase noise increases with MOS g_m)


P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

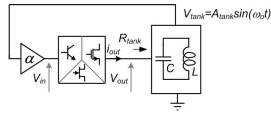
MOS phase noise - invariance


Noise injected into tank when ISF is near zero \rightarrow excellent!

Hajimiri and Lee, JSSC Feb. '98; Andreani et al., JSSC May '05

Phase noise in Colpitts oscillator

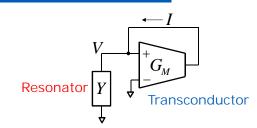
However, contrary to what was once (justifiably) believed, Colpitts is <u>more</u> noisy than the differential-pair LC oscillator!


Andreani et al., JSSC May '05

Harmonic oscillators - a general result

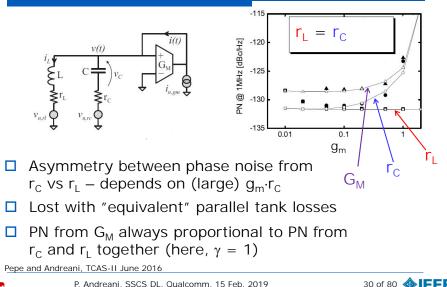
- 1) Γ sinusoidal and in quadrature with tank voltage
- 2) Active devices work as transistors
- 3) Transistor current noise proportional to ${\rm g}_{\rm m}$

Transistor effective noise depends only on tank loss and topology


J. Bank, "A harmonic oscillator design methodology based on describing functions", PhD thesis, Gothenburg, Sweden, 2006 Mazzanti and Andreani, JSSC Dec. '08; Murphy et al, TCAS-I June '10

P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

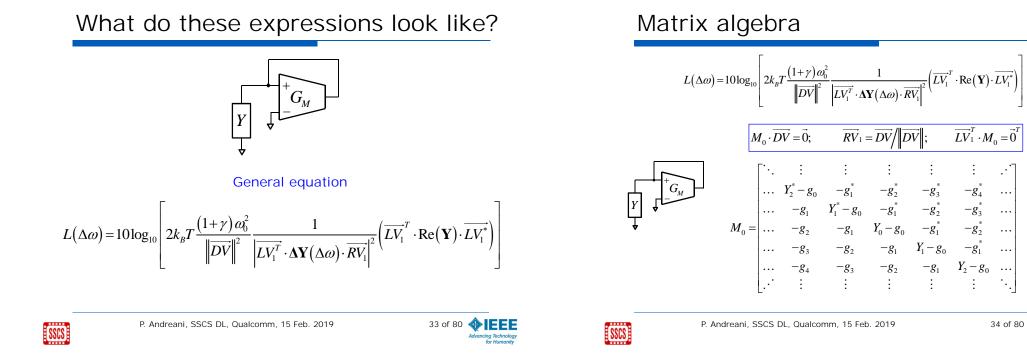
Alternative phase noise analysis

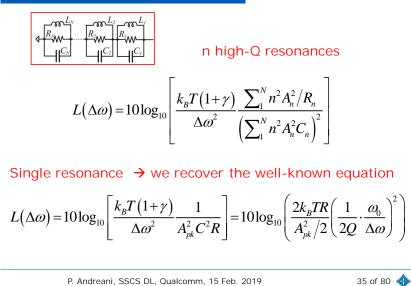

Matrix-based Fourier-series LTV approach, starting from

- $\vec{I} = \mathbf{Y}\vec{V}$ and $\vec{dI} = \mathbf{G}_{\mathbf{M}}\vec{dV}$
- All quantities are functions of $\mathit{w}_{\!0}\text{,}~2\mathit{w}_{\!0}\text{,}~\dots$, $n\mathit{w}_{\!0}$

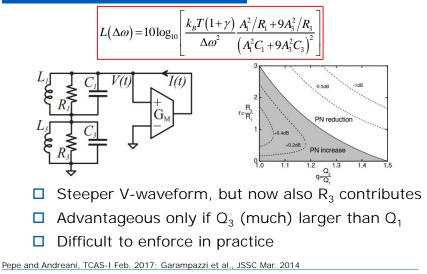
Pepe and Andreani, TCAS-I Feb. 2017

More on inductive vs capacitive losses


comm, 15 Feb. 2019


Results of new phase noise analysis

- □ Rigorous analysis under very broad hypotheses
 - G_M pure transconductance; Y linear; G_M noise proportional to G_M via γ
- Phase noise from G_M always in proportion of γ:1 to phase noise from Y, independently of resonator and transconductor nature
- D Phase noise expressions as functions of V and Y
- Closed-form, explicit phase noise expressions if Q is high
 - General case of Y resonating at multiples of *a*₀



Tank with multiple resonances

Tank resonating at ω_0 and $3\omega_0$

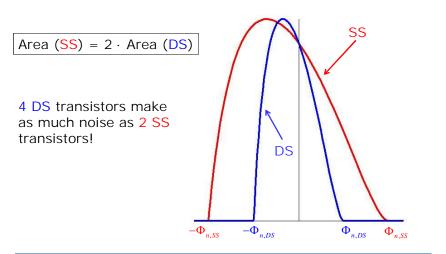
SSCS

An aside – CMOS ring oscillator Double-switch pair vs. single-switch pair Single-switch (SS) Double-switch (DS) pair oscillator [dBc/Hz] -35 @ 1 kHz $A_{DS} = \frac{4}{I_B}R$ $A_{\rm SS} = \frac{2}{-}I_{\rm B}R$ -145 --- spectreRF -o- theory -150 π 222 -155 $V_{\underline{+}}$ V_{\pm} V_ -160 L 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V, [V] ∽∕∕∕v What phase $\gamma_n + \gamma_p$ noise difference $2k_BT$ $L_{1/f^2}(\Delta\omega) = 10\log_{10}$ should we V_{thr} $I_{DD}V_{DD}$ $\Lambda \omega$ expect? V_{DD} Pepe and Andreani, to appear in TCAS-II (available on ieeexplore) 37 of 80 🚸 EEE P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019 P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019 SSCS SSCS

DS pair vs. SS pair – phase noise

$$L_{DS}(\Delta\omega) = 10\log\left(\frac{2k_BTR}{A_{DS}^2/2}\left(\frac{1}{2Q}\frac{\omega_0}{\Delta\omega}\right)^2\left(1+\frac{\gamma_n+\gamma_p}{2}\right)\right)$$
$$L_{SS}(\Delta\omega) = 10\log\left(\frac{2k_BTR}{A_{SS}^2/2}\left(\frac{1}{2Q}\frac{\omega_0}{\Delta\omega}\right)^2\left(1+\gamma_n\right)\right)$$

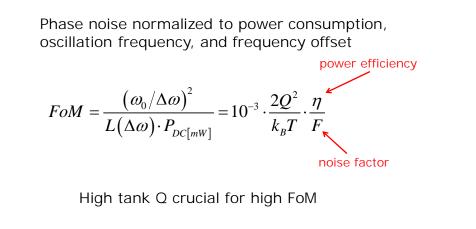
□ 60% from tank, 40% from transistors If $\gamma_n = \gamma_p = 2/3$


□ If
$$I_{B,DS} = I_{B,SS}$$
 and $\gamma_n = \gamma_p \rightarrow A_{DS} = 2A_{SS} \rightarrow L_{DS} = L_{SS} - 6dB$ (!)

Andreani and Fard, JSSC Dec. 2006

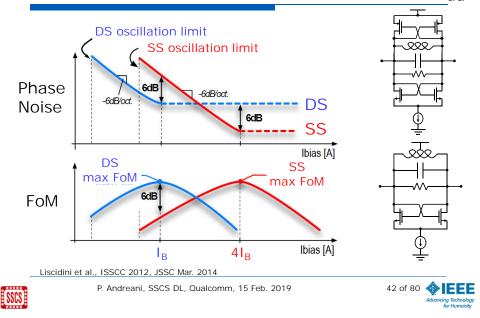
[SSCS]

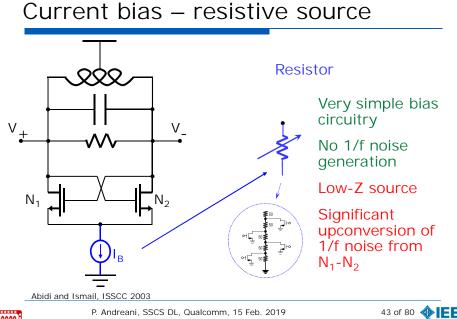
DS vs. SS – MOS noise

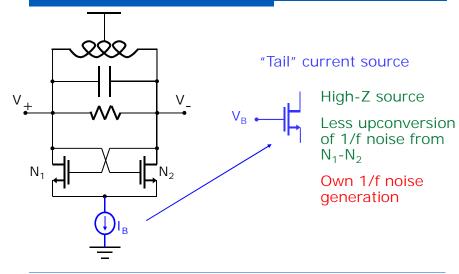


38 of 80 🚸 EEE

pair oscillator

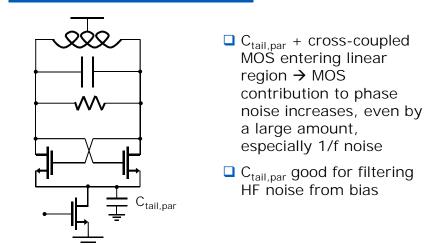

 \mathcal{M}





SS vs DS – PN and FoM with fixed V_{dd}

Current bias - MOS source

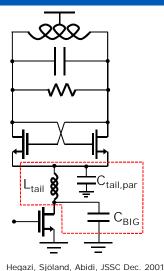


Impact of parasitic tail capacitance

Overview

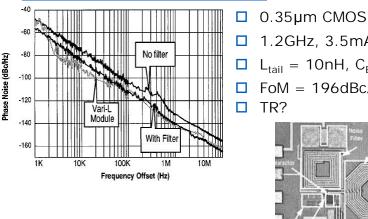
- Popular harmonic oscillators
 - Phase noise
- □ Architectures for low 1/f² and/or 1/f³ phase noise
- Series-resonance oscillator
- Design techniques for very wide frequency

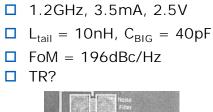
P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

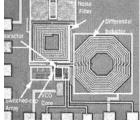

SSCS

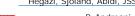
SSCS

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019

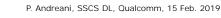


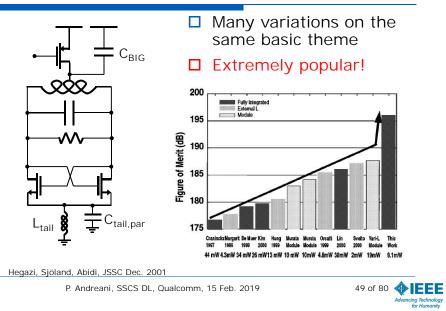

Possible solution – noise filter

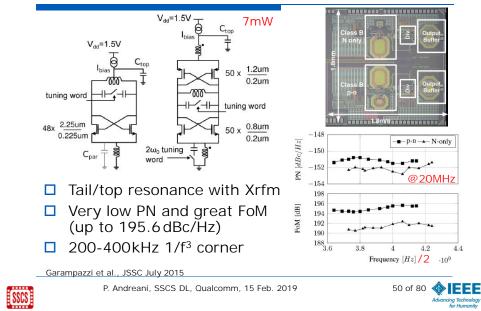



- □ Noise filter: $C_{tail,par}$ resonates with L_{tail} at $2\omega_0 \rightarrow MOS$ switches see high-Z at $2\omega_0$
- □ C_{BIG} filters tail noise and acgrounds L_{tail}
- □ C_{BIG} includes C_{DB} of MOS tail → long and large MOS, low 1/f noise
- Drawbacks: narrow-band. C_{tail,par} must be known with some precision, extra L_{tail}

Dramatic performance improvement

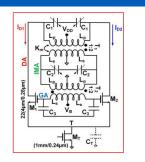


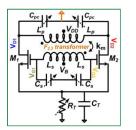


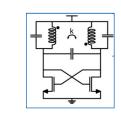


More on tail filter

A recent variation


Class- F_2 (or, here, $F_{2,3}$) oscillator


1/f³ pha


a 400

€ 30

Alternative to tail resonance

51 of 80

- \Box Design tank for differential resonance at ω_0 and common-mode resonance at $2\omega_0$
 - Also here, the $2\omega_0$ resonance must track the ω_0 resonance - two capacitor banks

Babaie et al., RFIC 2013, JSSC Mar. 2015; Shahmohammadi et al., ISSCC 2015; Murphy et al., ISSCC 2015

P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

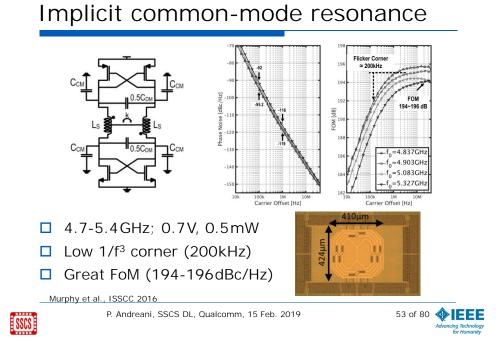
SSCS

□ Very low PN (-124dBc/Hz @ 1MHz)

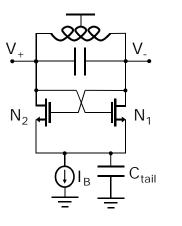
□ 5.4-7.0GHz; 1V, 10-12mW

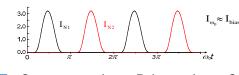
□ Low 1/f³ corner (60-130kHz)

□ Very good FoM (~191dBc/Hz)


Shahmohammadi et al., ISSCC 2015

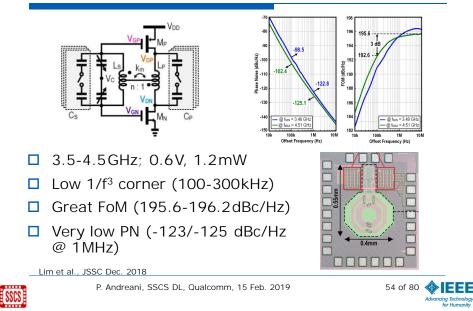
ESSCS




25 Frequency (GHz)

Class-F₂

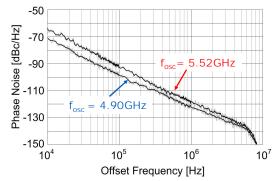
A totally different approach – class-C

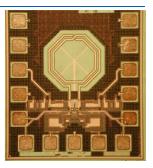


- C_{tail} turns class-B into class-C: optimal differential "Colpitts" oscillator
- Ideally, 3.9dB lower phase noise for the same bias current
- □ Also here, C_{tail} filters off highfrequency noise from tail, and includes tail C_{DB} → long and large MOS, low 1/f noise

Mazzanti and Andreani, JSSC Dec. 2008

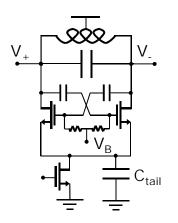
Single-ended, 2nd-harmonic resonance




Original prototype

- $\Box \quad 4.90 \text{GHz} < f_c < 5.65 \text{GHz}$
- □ 1V, 1.4mW

SSCS

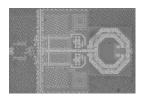

 \Box 193.5dBc/Hz < FoM < 196dBc/Hz

Design issues in class-C CMOS oscillator

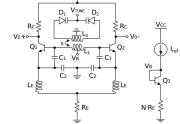
- Diff-pair must avoid linear region (otherwise, large PN boost) \rightarrow low V_B for MOS gate bias via feedback loop
- XFMR feedback also possible
- □ Ideally, no 1/f noise upconversion from MOS pair
- Lower maximum oscillation amplitude than in ideal class-B CMOS oscillator
- Very attractive for BJT VCOs

Mazzanti and Andreani, JSSC Dec. 2008; Fanori and Andreani, JSSC July 2013; Bevilacqua and Andreani, TCAS-I May 2012; Bevilacqua and Andreani, unpublished work

SSCS

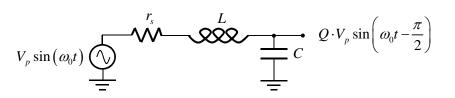

SSCS

P. Andreani, SSCS DL. Qualcomm, 15 Feb. 2019



Colpitts VCO in SiGe BiCMOS process

- □ 18.8-23.1GHz; 4.0V, 17.5mA
- PN = -119 dBc/Hz @ 1MHz (best)п \Box FoM = 188dBc/Hz


SSCS

58 of 80

Overview

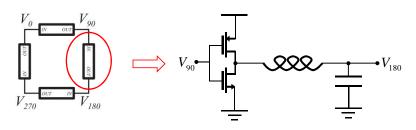
- Popular harmonic oscillators
 - Phase noise
- □ Architectures for low 1/f² and/or 1/f³ phase
- Series-resonance oscillator
- Design techniques for very wide frequency

Oscillation with series resonance

- Voltage driven
- Gain equal to guality factor \rightarrow internal oscillation may be much higher than V_{DD}
 - Attractive for ultra-low phase noise
- \square $\pi/2$ phase shift between input and output

P. Andreani, L. Fanori, and T. Mattsson, "Series-resonance oscillator," U.S. Patent 2015 0381 157, 2015

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019


59 of 80

Phase shift by quadrature

- □ We disregard the (important) issue of start-up
- $\hfill\square$ Square wave between V_{DD} and GND at LC input
- MOS devices work almost exclusively as switches → channel resistance in series with the tank's

Figure of merit

Ideally, close to 1

$$FoM = 10^{-3} \cdot \frac{2Q^2}{k_B T} \cdot \frac{\eta^{-1}}{1 + F}$$
 Ideally, close to C

- □ Usual dependence on Q²
- Very large power consumption, ultra-low phase noise (plus quadrature phases for free)
- □ However, momentous issues:
 - MOS resistance is critical (current-based architectures such as class-B and class-C are much more robust)
 - Stray resistances of GND and power supply distribution are also critical
 - Very large internal voltages make frequency tuning difficult

Phase noise

$$L(\Delta\omega) = 10\log_{10}\left[\frac{4k_{B}Tr_{s}}{\left(4I_{pk}L\Delta\omega\right)^{2}}\left(1+F\right)\right] = 10\log_{10}\left[\frac{4k_{B}T}{\left(4I_{pk}\Delta\omega\right)^{2}r_{s}}\left(\frac{1}{Q}\frac{\omega_{0}}{\Delta\omega}\right)^{2}\left(1+F\right)\right]$$
$$I_{pk} = \frac{2}{\pi}\frac{V_{DD}}{r_{s}}$$

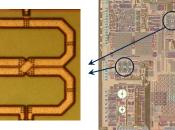
- MOS work as switches → previous phase noise theorems do not apply
- F accounts for 1) MOS are non-ideal switches, and
 2) they do work as transconductors for a (tiny) fraction of the oscillation period
- □ Ideally, F is negligible!

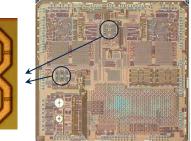
Pepe, Bevilacqua, Andreani, TCAS-I Feb. 2018

P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019 62 c

Overview

- Popular harmonic oscillators
 - Phase noise
- □ Architectures for low 1/f² and/or 1/f³ phase noise
- Series-resonance oscillator
- Design techniques for very wide frequency tuning range RF CMOS VCOs




VCOs in modern radios – I

- □ Carrier aggregation requires several harmonic VCOs
 - Active at the same time
 - Should not pull one another
- □ Band proliferation favors VCOs with a very wide tuning range (TR)
 - Wider than 1 octave is particularly attractive

VCOs in modern radios – II

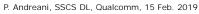
- VCO with 8-shaped tank inductor
 - Much less sensitive to external magnetic fields
 - Generates itself a vanishing magnetic field
 - Slightly lower Q acceptable
 - Often used

M. Nilsson et al., ISSCC 2011

SSCS

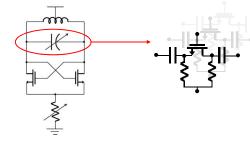
P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

66 of 80


P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

- □ Two or more VCOs with overlapping TRs
 - Saves power, costs area
 - Very popular choice in real-life products

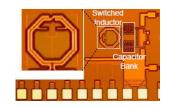
Hadiichristos et al., ISSCC 2009

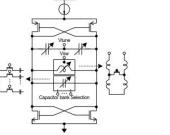


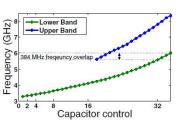
65 of 80

Very-Wide-TR VCOs – II

- □ Large switchable C in parallel to small L
 - floating switches
 - power wasted at low frequencies, compared to reasonable phase-noise specs
 - power cannot be decreased without killing the oscillation





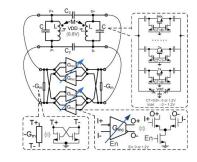

Very-Wide-TR VCOs – III

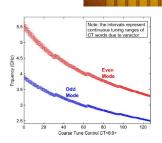
Switchable I

- Ultra-wide TR possible
- Difficult to obtain low PN at high FoM
- Additional issue: switchable 8-shaped inductor

Sadhu et al., CICC 2009

SSCS

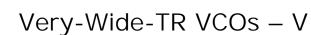

SSCS


P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

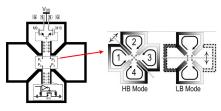
Very-Wide-TR VCOs – IV

- Transformer-based VCOs
 - Two resonances with overlapping TRs
 - TR > 1 octave
 - Difficult to design an 8-shaped transformer

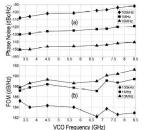
Bevilacqua et al., TCAS-II Apr. 2007; Li et al., JSSC June 2012



P. Andreani, SSCS DL, Qualcomm, 15 Feb. 2019

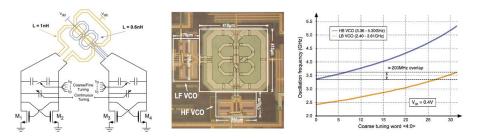

70 of 80 🚸 EEE

Transforme



Mode-switching VCO

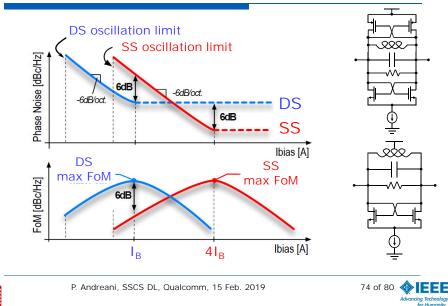
- 4 inductors, two oscillation modes
- Rejects external magnetic fields
- TR > 1 octave
- Excellent PN and FoM
- Large area



Taghivand et al., ISSCC 2014

Very-Wide-TR VCOs – VI

- Double-core VCO
 - Two concentric 8-shaped coils do not interfere (much) with each other
 - TR > 1 octave; saves inductor area, sub-optimal Q


Fanori et al., ISSCC 2014

Very-Wide-TR VCOs – VII

- Reconfigurable active core
 - Standard LC tank design (i.e., with very large capacitance)
 - Negative resistance: either single-switch (nMOS) pair -SS mode
 - or, double (complementary nMOS-pMOS) switch pair DS mode
 - DS mode avoids power waste at lower frequencies

SS pair vs. DS pair, again

Liscidini et al., ISSCC 2012, JSSC Mar. 2014

SSCS

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019

Very-Wide-TR reconfigurable VCO R_{bias,CP} ∦ DS M3 $\mathsf{R}_{\mathsf{bias},\mathsf{SP}}$ V_{rtd} = 0.9V, f₀ = 5.8GHz, FoM 186/189dBc/ requency Offset (MH:

- STM 28nm UTBB FD-SOI CMOS 2.8-5.8 GHz
- □ -154 < PN (dBc/Hz @ 20MHz) < -142
- 186 < FoM (dBc/Hz) < 189
- $300 \text{ kHz} < 1/\text{f}^3 \text{ corner} < 3 \text{ MHz}$

Fanori et al., RFIC 2015

Conclusions

SSCS

SSCS

- Rigorous phase noise results For transconductor-based oscillators \Box Class-B VCOs \rightarrow simple, robust, ubiquitous Tail filter improves phase noise, even largely Recent proposals: common-mode tank resonance at $2\omega_{0}$
- \Box Class-C \rightarrow higher efficiency than standard class-B, possibly low 1/f³ phase noise, but more complicated
 - Class-C must be enforced for all working conditions
 - Excellent for BJT VCOs
- \Box Series-resonance oscillator \rightarrow great potential, but important issues to be solved
- Several techniques for very wide tuning range
 - None a clear winner

Frequency

Tunina

References – I

- 1. A. Hajimiri and T. H. Lee, A general theory of phase noise in electrical oscillators," IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998
- 2. P. Andreani and X. Wang, "On the Phase-Noise and Phase-Error Performances of Multiphase LC CMOS VCOs," IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883-1893, Nov. 2004.
- 3. P. Andreani et al., "A study of phase noise in Colpitts and LC-tank CMOS oscillators," IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May 2005.
- 4. A. Mazzanti and P. Andreani, "Class-C harmonic CMOS VCOs, with a general result on phase noise," IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
- 5. J. Bank, "A harmonic oscillator design methodology based on describing functions", PhD thesis, Gothenburg, Sweden, 2006.
- D. Murphy et al., "Phase noise in LC oscillators: "A phasor-based analysis of a general result and of 6. loaded", IEEE Trans. Circuits Syst. I, vol. 57, no. 6, pp. 1187-1203, Jun. 2010.
- F. Pepe and P. Andreani, "Still More on the 1/f² Phase Noise Performance of Harmonic Oscillators," 7. IEEE Trans. Circuits Syst. - II, vol. 63, no. 6, pp. 538-542, June 2016
- 8. F. Pepe and P. Andreani, "A General Theory of Phase Noise in Transconductor-Based Harmonic Oscillators," IEEE Trans. Circuits Syst. - I, vol. 64, no. 2, pp. 432-445, Feb. 2017.
- 9. M. Garampazzi et al., "An Intuitive Analysis of Phase Noise Fundamental Limits Suitable for Benchmarking LC Oscillators", IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 635-645, Mar. 2014.
- 10. F. Pepe and P. Andreani, "An Accurate Analysis of Phase Noise in CMOS Ring Oscillators", IEEE Trans. Circuits Syst. - II (early access on ieeexplore).
- 11. P. Andreani and A. Fard, "More on the 1/f² phase noise performance of CMOS differential-pair LCtank oscillators," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2703–2712, Dec. 2006.
- 12. M. Garampazzi et al., "Analysis and Design of a 195.6 dBc/Hz Peak FoM P-N Class-B Oscillator With Transformer-Based Tail Filtering", IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1657–1668, Jul. 2015

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019

References – II

- 13. D. Murphy et al., "A VCO with Implicit Common-Mode Resonance", in Proc. of the IEEE ISSCC 2015, pp. 442-443, 2015.
- 14. A. Liscidini et al., "A 36mW/9mW Power-Scalable DCO in 55nm CMOS for GSM/WCDMA Frequency Synthesizers," in Proc. of the IEEE ISSCC 2012, pp. 348-350, 2012.
- 15. A. Liscidini et al., "A 36mW/9mW Power-Scalable DCO in 55nm CMOS for GSM/WCDMA Frequency Synthesizers," IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 646-656, Mar. 2014.
- 16. A. Ismail and A. Abidi, "CMOS differential LC oscillator with suppressed up-converted flicker noise," in Proc. of the IEEE ISSCC 2003, pp. 98-99, 2003.
- 17. E. Hegazi et al., "A filtering technique to lower LC oscillator phase noise," IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
- 18. M. Babaie et al., "Ultra-low phase noise 7.2-8.7 GHz clip-and-restore oscillator with 191dBc/Hz FoM," in Proc. of the IEEE RFIC 2013, pp. 43-46, 2013.
- 19. M. Babaie and R. B. Staszewski, "An Ultra-Low Phase Noise Class-F₂ CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability," IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679-692, Mar 2015
- 20. M. Shahmohammadi et al., "A 1/f Noise Upconversion Reduction Technique Applied to Class-D and Class-F Oscillators", in Proc. of the IEEE ISSCC 2015, pp. 444-445, 2015.
- 21. D. Murphy et al., "A Complementary VCO for IoE that Achieves a 195dBc/Hz FOM and Flicker Noise Corner of 200kHz", in Proc. of the IEEE ISSCC 2016, pp. 44-45, 2016.
- 22. C.-C. Lim et al., "An Inverse-Class-F CMOS Oscillator With Intrinsic-High-Q First Harmonic and Second Harmonic Resonances", IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3528-3539, Dec. 2018.
- 23. A. Mazzanti and P. Andreani, "Class-C harmonic CMOS VCOs, with a general result on phase noise," IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.

P. Andreani, SSCS DL. Qualcomm, 15 Feb, 2019

78 of 80

References – IV

- 36. M. Taghivand et al., "A 3.24-to-8.45GHz Low-Phase-Noise Mode-Switching Oscillator", in Proc. of the IEEE ISSCC 2014, pp. 368-370, 2014.
- 37. L. Fanori et al., "A 2.4-to-5.3GHz Dual-Core CMOS VCO with Concentric 8-Shaped Coils", in Proc. of the IEEE ISSCC 2014, pp. 379-372, 2014.
- 38. L. Fanori et al., "A 2.8-to-5.8 GHz Harmonic VCO in a 28 nm UTBB FD-SOI CMOS Process", in Proc. of the IEEE RFIC 2015, pp. 195-198, 2015.

SSCS

- 24. A. Bevilacqua and P. Andreani, "An Analysis of Noise to Phase Noise Conversion in CMOS Harmonic Oscillators," IEEE Trans. Circuits Syst. - I, vol. 59, no. 5, pp. 938-945, May 2012.
- 25. L. Fanori and P. Andreani, "Highly Efficient Class-C CMOS VCOs, Including a Comparison With Class-B VCOs", IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1730-1740, July 2013.
- 26. F. Boscolo et al., "A 21GHz 20.5%-Tuning Range Colpitts VCO with -119dBc/Hz Phase Noise at 1MHz Offest", in Proc. of the IEEE ESSCIRC 2017, pp. 91-94, 2017
- 27. P. Andreani, L. Fanori, and T. Mattsson, "Series-resonance oscillator," U.S. Patent 2015 0381 157, Dec. 31, 2015. http://www.freepatentsonline.com/y2015/0381157.html
- 28. M. Tohidian et al., "A tiny quadrature oscillator using low-Q series LC tanks," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 8, pp. 520-522, Aug. 2015.
- 29. F. Pepe, A. Bevilacqua, and P. Andreani, "On the Remarkable Performance of the Series-Resonance CMOS Oscillator," IEEE Trans. Circuits Syst. - I, vol. 65, no. 2, pp. 531-542, Feb. 2018.
- 30. M. Nilsson et al., "A 9-band WCDMA/EDGE transceiver supporting HSPA evolution," in Proc. of the IEEE ISSCC 2011, pp. 366-368, 2011.
- 31. A. Hadjichristos et al., "Single-chip RF CMOS UMTS/EGSM transceiver with integrated receive diversity and GPS", in Proc. of the IEEE ISSCC 2009, pp. 118-119, 2009
- 32. H. Sjöland, "Improved Switched Tuning of Differential CMOS VCOs," IEEE Trans. Circuits Syst. -II, vol. 49, no. 5, pp. 352-355, May 2002.
- 33. B. Sadhu et al., "A CMOS 3.3-8.4 GHz Wide Tuning Range, Low Phase Noise LC VCO", in Proc. of the IEEE CICC 2009, pp. 559-562, 2009.
- 34. A. Bevilacqua et al., "Transformer-based dual-mode voltage-controlled oscillators," IEEE Trans. Circuits Syst. - II, vol. 54, no. 4, pp. 293-297, Apr. 2007.
- 35. G. Li et al., "A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1295-1308, June 2012.

