Emerging Memories and Pathfinding for the Era of sub-10nm System-on-Chip

Seung Kang Qualcomm Technologies, Inc.

> IEEE Solid-State Circuits Society Seminar San Diego, CA August 8, 2019

Memory Is Big Business

>> \$100 Billions*

DECEMBER 20, 2016

Total Memory Market Forecast to Increase 10% in 2017

Research Bulletin

Total Memory IC Market (\$B)

Chipmakers under pressure as semiconductor 'supercycle' stalls

https://www.dw.com/

* Not including embedded memories for AP, SOC, and MCU

Memory Subsystem

Hierarchical memory layers

Memory Subsystem

There is no such thing like a universal memory

Problem Statement 1

"Memory Wall"

Overall system performance & power governed more by memory subsystem than by CPU subsystem

Many-Core Processors

Increasing SRAM area & leakage power overhead

- Datacenter applications projecting ~120 Mbytes (960 Mb) L3 cache at 10nm and beyond.
- More expensive at advanced nodes (6T-SRAM: ~550 F² at 7 nm vs. ~150 F² at 40 nm)
- High standby/leakage power (worse at high T)

Problem Statement 3

IOT & Embedded System

Inherent drawbacks caused by memory limitations

- Energy-hungry
- Poor form factor
 - High cost
- Security vulnerability

"The IOT is an NVM problem." Greg Yeric, ARM (2015 IEDM Plenary Talk)

A New Perspective on Energy Efficiency

New Demand and Criteria for Wearable and Bioelectronic Devices

Critical Challenge: Battery Life (Energy Efficiency)

A New Perspective on Security & Privacy

Demand for secure memory and HW primitives (e.g. PUF)

Problems, new requirements, and opportunities demand advanced memories...

Memory Classification

Phase Change Memory PCM PC-RAM PRAM

PCM: Early History

Neale, Nelson, & Moore, Electronics, 1970

"Nonvolatile and reprogrammable, the <u>read-mostly memory</u> is here"

- Density: 256 bits
- Die Size: 122-by-131-mil (10.3 mm²)
- Read: 2.5 mA, < 5 V
- Set: 5 mA, ~25 V, 10 ms
- Reset: < 200 mA, 25 V, 5 μs

PCM: Basic Concept

- Programming: Joule heating followed by natural cooling
- Relatively simple physics!

PCM: Cell and Array Architecture

Cell = Access Device + Phase-change Element

1FET-1R

The required characteristics of access FET, diode, or BJT are largely governed by the upper limit of the reset current (to drive localized melting) at a target cell size.

PCM: Evolution of Cell Configuration

Improve thermal isolation

Source: H.-L. Lung (ITRS ERD, 2014)

PCM: Reliability

Cycling Endurance

Chen et al. (Macronix-IBM, IMW, 2009)

Updoped GST

Doped GST

PCM: Reliability

Retention

Shih et al. (Macronix-IBM, IEDM, 2008)

PCM: Prototype

Samsung 8Gb PCM (ISSCC, 2012)

TT I W HINK MARK	CAP	AD and CAL	N Buffer	ALCONOMIC DISCOUNT OF A DESCRIPTION
Partition 0		Annual Summer		Partition 0
Partition 1		Tanting Constants		Partition 1
Partition 2		Contrast Character	: 병영병 분분 분립 관련 명령 등 분 등 자	Partition 2
Partition 3		Terrent Control In		Partition 3
Partition 4		\$		Partition 4
Partition 5		AS		Partition 5
Partition 6		\mathbf{x}		Partition 6
Partition 7				Partition 7
GYPASS		D. Steen L		GYPASS
III ISAs/WDRVs		-		SAs/WDRVs
RCPDEC		CINE IN		RCPDEC
und been Mad merte und Ben	21.5		and the second	and the local first in the line
PUMPs	DC	Peri	DC	PUMPs
	THE P		1 Pet	
A D D D D D D D D D D D D D D D D D D D	DO	PAD and DIN	Buffer	

Process Technology	20nm PRAM Process					
Cell Size	41X41nm ² 4.2F ²					
Cell Switch	Diode-switch					
Chip Size	9.43X6.30mm ²					
Dowor Cupply	VDD : 1.8V					
Power Supply	VDDQ, VDDCA: 1.2V					
Temperature Range	-25 ~ 85 °C					
Organization	1GbX8 (LPDDR2 interface)					
Tile(CPWL/CPBL)	8Mb (2Kb/4Kb)					
Tile Array(X/Y)	64/16					
tSET	150ns					
Parallel write	128b(default), 256b (option)					
Write performance	40MB/s (internal power only)					
write performance	133MB/s (external power+256b parallel write)					
tRCD	120ns					
I/O Bandwidth	800Mb/s/pin					

PCM: Evolution to 3D

Kau et al. (Intel & Numonyx, IEDM, 2009)

- PCMS
- Phase-change memory (PCM) coupled with a selector (OTS)
- OTS: Ovonic Threshold Switch
- 64 Mb
- Endurance: 10⁶ cycles

Intel Optane Memory Series (2017)

3D XPoint (Intel & Micron, 2016)

20nm node
128 Gb
SLC
Selector
Memory

Chip Density	16 GB (128 Gb)	32 GB		
Read Latency	7 μs	9 µs		
Write Latency	18 µs	30 µs		
Random Read	190K IOPS	240K IOPS		
Random Write	35K IOPS	65K IOPS		
Sequential Read	900 MB/s	1350 MB/s		
Sequential Write	145 MB/s	290 MB/s		
Power (Active/Idle)	3.5 W	/1W		
Endurance (Lifetime Writes)	182.5 TB			

Source: Intel.com

3D XPoint as Storage Class Memory

It does not replace DRAM, or NAND storage, but it adds a new *layer* to improve the subsystem

Source: Intel-Micron, 2015

Magnetoresistive RAM MRAM Spin-transfer-torque MRAM STT-MRAM ST-MRAM STT-RAM

A Building Block: Magnetic Tunnel Junction

Multiple flavors, but perpendicular MTJ

Electrical resistance varied by relative electron spin alignment

: <u>Magnetoresistance (MR)</u>

MRAM Snapshot

A new class of memory: Nonvolatile RAM

- Fast NVM
- High endurance
- ~3 additional masks over baseline logic
- Low voltage (no charge pump)
- Scalable

Lu et al. (Qualcomm & TDK) Park et al. IEDM, 2015

Park et al. (Qualcomm & Applied Mat.) IEDM, 2015 Operation voltage on MTJ Read: ~0.1 V Write: 0.3 – 0.5 V

MRAM Array Architecture

Use the same bitcell for both data and reference array

- Small read window → Design for robust read (sensing) is critical
- Balancing switching asymmetry and source generation

Challenges for MRAM Design and Reliability

Narrow design window for deeply scaled nodes

Prevent read error

- Low V_{Read} (~0.1V)
- High TMR
- Fast fall off of RDR slope

Prevent write error

- Low V_{Write}
- Fast fall off of WER slope

Improve barrier reliability

- High V_{BD}
- Contain TDDB

MRAM Device Scalability: I_c

Most important bitcell and design parameter

At small dimensions, dynamic current consumption becoming comparable with that of SRAM cell current

MRAM Device Scalability: Endurance

Practically unlimited endurance for cache applications

Kan et al., IEDM, 2016

Intrinsically solid Better with MTJ scaling In real life, subjected to design robustness & defect control

MRAM: Prototypes

Samsung (IEDM, 2016 / 7th MRAM Global Innovation Forum)

Items	Description
CMOS D/R	28nm LPP logic
Density	8Mb
Cell architecture	1T-1MTJ
Unit cell size	0.0364 µm ²
МТJ	perpendicular MTJ based on MgO/CFB
MTJ size	38~45nm
Clock Frequency	40MHz
IO Width	x32/x64
Redundancy	Rows & Columns
Power Supply (Core/IO)	1.0V/1.8V

SK Hynix-Toshiba (IEDM, 2016 / ISSCC, 2017)

4Gb 9F² (30nm)

'ECC/PB) 28Mb (x 16K)		(256Mb)	X-Dec.	
Process	4 Metal CMOS, I	40(Cu) for SL & E	3L	
Cell Size	0.090 µm x 0.09	90 μm = 0.0081 μ	um ²	
Cell Info.	9F2, 1T1MTJ, p-	.MTJ		
Organization	4Gb, x16/x32, 8	Banks, 256B-Pag	je/Bank	Q
Supply Voltage	VDD1=1.8V, VD	D2=1.2V		ç
Read Timing	Latency 50.5 ns	, Page Read Cycle	∋ 5ns	
Chip Interface	LPDDR2-S4B like	e, tCK_min = 2.5	ns	
Chip Size	10.48 mm x 10.	26 mm = 107.5 r	nm²	
0,0000			Territoria (

MRAM: Qualcomm Demo System

MRAM integrated along with PSRAM and NOR Flash for performance and power benchmarking

Integrated into a demo tablet ~350X faster than Flash ~3X faster than PSRAM

MRAM can unify PSRAM (volatile RAM) and NOR (nonvolatile storage) with PPAC advantages

MRAM In Production

EETimes

DESIGNLINES | MEMORY DESIGNLINE

Samsung Says It's Shipping 28-nm Embedded MRAM

By Dylan McGrath, 03.07.19 🔲 4

EVERSPIN SHIPS 1GBIT STT-MRAM

January 14, 2019 //By Peter Clarke

GLOBALFOUNDRIES

GLOBALFOUNDRIES Announces Availability of Embedded

MRAM on Leading 22FDX® FD-SOI Platform

Sep 20, 2017

TECHSP@T

Intel confirms non-volatile MRAM is being produced with high yield

A candidate to replace DRAM, SRAM, and flash By Greg Synek on February 21, 2019, 7:50 AM

TSMC EMBEDDED MRAM IS KEY TO GYRFALCON AI CHIP

November 22, 2018 //By Peter Clarke

MRAM for Processing-in-Memory CNN Accelerator

A single-chip solution for Mobile and IOT applications

From Gyrfalcon Technologies (2018)

CNN Matrix Processing Engine (MPE)

CNN block with memory array

I	Power(mW)		
Conditions		MRAM	SRAM
Room Tempreature	Dynamic	38.3	39.2
Room Tempreature High Tempreature	Standby Dynamic	$\frac{5.5}{35.4}$	$34.3 \\ 43.1$
High Tempreature	Standby	7.2	136

- 22nm eMRAM (40 MB)
- 9.9 TOPS/W

Resistive RAM RRAM ReRAM Conductive Bridge RAM CB-RAM

RRAM: Materials

Two-terminal resistive switching elements (excluding PCM and MRAM). Found in numerous combinations of materials.

1																	2
Hydrogen					orresp	onding	g binar	y oxide	e that								He
1.00794		1			whihit	e histal	ble rec	ictance	switch	ina	8	-	6	-		0	4.003
3	4			exhibits distable resistance switching 5 6 7 8 9										10			
Li	Be											B	С	Ν	0	F	Ne
Lithium 6.941	9.012182											Boron 10,811	Carbon 12.0107	Norogen 14.00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20.1797
11	12	1		1	metal t	that is	used fo	or elect	rode			13	14	15	16	17	18
Na	Mo											AL	Si	р	S	CI	Ar
Sodium	Magnesium		_									Alaman	Silicon	Phosphores	Sulfur	Chlorine	Argon
10	24.3050	21	22	22	24	25	26	27	26	20	20	20.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21 C.	22	23	24 C	2.5	20	<i>C</i> ,	20	27	30	C.	52	55	54	- 55 	- 50 - 12
Portaccium	Ca	Sc	II	Varadium	Cr	Nim	re	CO	INI	Cu	Zn	Galliam	Ge	AS	Selemina	Br	Kr
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54,938049	55.845	58.933200	58,6934	63.546	65.39	69.723	72.61	74.92160	78.96	79,904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	0	3.7				100	-	733			01	×	0	C1	1983		
Rb	Sr	r	Zr	Nb	Mo	Te	Ru	Kh	Pd	Ag	Ca	In	Sn	SD	Te		Xe
Rubidium 85.4678	Strontion \$7.62	Yanam Se onses	Zinconam PL 224	ND Nichlan	Molyhdenum 95.04	Technetium	Rutesian	Rhodium	Pd Palladium	Ag	Cadesium L12 411	In Indian	Sn The LLS 710	SD Antimony 121 760	Tellorium	I Iodine	Xe Xenon 131.20
Rb Rubidium 85.4678	Strontium 87.62	Ymium 88.90585	Zr Zinconiam 91.224 72	Nb Niddan 92.90638 73	Mo Molybdenum 95,94 74	Tc Technetium (98) 75	Ru Rutheasara 101.07 76	Rh Rhodium 102.90550 77	Pd Pathelium 106.42 78	Ag silver 107.8682 79	Cd Cadesium 112.411 80	In Indian 114.818	Бп 118,710 82	SD Antimony 121.760 83	Tellurium 127.60	I lodine 126.90447 85	Xe Xenon 131.29 86
Rb Rubidiums 85.4678 55 Cs	Strontium 87.62 56 Ro	¥ <u> </u>	Zr Ziromiam 91.224 72 Hf	Nb 92.90638 73	Mo Molyhdenum 95,94 74	Technetium (98) 75 Po	Ru Rutheanum 101.07 76	Rh Rhodium 102.90550 77	Pd Palladium 106.42 78 Pt	Ag silver 107,8682 79	Cd Cadmium 112.411 80 Ha	In Indiam 114.818 81 TI	Бп 118.710 82 РЬ	Sb Astimony 121.760 83 Bi	Te Tellurium 127.60 84 Po	L todine 126.90447 85	Xe Xenon 131.29 86 Dn
Rb Rubidium 85.4678 55 Cs Cesium	Sr Steonthum 87.62 56 Ba Bariam	x xwian <u>88,90585</u> 57 La Lanharum	Zr Zirconam 91.224 72 Hf Hafnum	Nb Nichten 92.90638 73 Ta Tantalen	Molyhdenam 95,94 74 W Tungstes	Technetium (98) 75 Re Rhenium	Ru Rutheasara 101.07 76 Os Oscalum	Rh Rhodium 102.90550 77 Ir Irdium	Pd Pathadium 106.42 78 Pt Ptatiman	Ag Silee 107.8682 79 Au Gul	Ca Cadinsium 112.411 80 Hg Mercury	In tachan 114.818 81 Th Thalliam	Sn Tia 118,710 82 Pb Lead	Sb Antimony 121.760 83 Bi Bismuth	Tellurium 127.60 84 Po Polonium	L todine 126.90447 85 At Astatine	Xe Xenon 131.29 86 Rn Radon
Rb Rubidium 85.4678 55 Cs Cesium 132.90545	Sr Steonthom 87.62 56 Ba Barium 137.327	1 57 57 La 138.9055	Zr Zironati 91.224 72 Hf Hafnium 178.49	Nb Nittlan 92.90638 73 Ta Tantalem 180.9479	Mo Molybdenam 95.94 74 W Trangsten 183.84	Tc Technetium (98) 75 Re Rhenium 186,207	Ru Rutheauara 101.07 76 Os Osmitum 190.23	Rh Rhedium 102.90550 77 Ir Irdium 192.217	Pd Pathadium 106.42 78 Pt Ptatasans 195.078	Ag 505cr 107.8682 79 Au Gal 196.96655	Cd Cadirsium 112,411 80 Hg Mercury 200,59	In todium 114.818 81 Th Thallium 204.3833	Sn Tia 118.710 82 Pb Lead 207.2	SD Antimony 121.760 83 Bi Bismuth 208.98038	Te Tellurisam 127.60 84 Pol Polonium (209)	L 126.90447 85 At Astatine (210)	Xe Xenon 131.29 86 Rn Radon (222)
Rb Rubidium 85.4678 55 Cs Cesium 132.90545 87	Sr Steonthum 87.62 56 Ba Barlum 137.327 88	Yorium 88.90585 57 La Lanthurnem 138.9055 89	Zr 247000000 91.224 72 Hf Hafniam 178.49 104	Nb Nickan 92.90638 73 Ta Tantakan 180.9479 105	N10 Molyhdenam 95,94 74 W Tengster 183,84 106	1c Technetium (98) 75 Re Rhenium 186.207 107	Ru Rufteaura 101,07 76 Os Osmium 190,23 108	Rh Rhedium 102.90550 77 Ir Irstein 192.217 109	Pd Pathadium 106.42 78 Pt Ptatmens 195.078 110	Ag _{Silver} 107,8682 79 Au _{Gall} 196,96655 111	Cd Cadinium 112.411 80 Hg Mercury 200.59 112	In trdium 114.818 81 Tl Thaflium 204.3833 113	Sn Ta 118.710 82 Pb Lead 207.2 114	SD Amimony 121.760 83 Bi Bismath 208.98038	Te Tellurikani 127.60 84 Polonium (209)	L todine 126.90447 85 At Astatine (210)	Xe Xenon 131.29 86 Rn Radon (222)
Rb Rubidium 85.4678 55 Cs Ceinm 132.90545 87 Fr	Sr Steenthum 87.62 56 Ba Bashum 137.327 88 Ra	Y Stretum 88.90585 57 La Landhareen 138.9055 89 Ac	Zr Zirconium 91.224 72 Hf Hafhum 178.49 104 Rf	Nb Nickan 92.90638 73 Ta Tanthen 180.9479 105 Db	MI0 Motyhdenam 95,94 74 W Tangates 183,84 106 Sg	Тс тесниениин (98) 75 Re Rbenium 186,207 107 Bh	Ru Rufcesurs 101,07 76 Os Osmium 190,23 108 Hs	Rh Rhodium 102.90550 77 1r trathum 192.217 109 Mt	Pd Palladium 106.42 78 Pt Platamen 195.078 110	Ag ^{Silee} 107,8682 79 Au Gal 196,96655 111	Cd Cadesium 112.411 80 Hgg Mercury 200.59 112	In tadium 114.818 81 Tl Thallium 204.3833 113	Sn Ta 118,710 82 Pb Lead 207,2 114	SD Antimory 121.760 83 Bi Bismuth 208.98038	Tettorium 127.60 84 Polonium (209)	L todine 126.90447 85 At Assatine (210)	Xe Xenon 131.29 86 Rn Radon (222)
Rb Rub.dum 85.4678 55 Cs Cesium 132.90545 87 Fr Francium (223)	Sr Steentham 87.62 56 Ba Batham 137.327 88 Ra Ra Ratione (226)	Y Sociam 88,00585 57 La Lantherem 138,9055 89 Acc Actinium (227)	Zr Zhroniun 91.224 72 Hif Hafhium 178.49 104 Rf Rutherfordium (261)	Nb Nicham 92.90638 73 Tan Tantalum 180.9479 105 Db Dubnam (262)	MI0 Molyhdenam 95,94 74 W Transitient 183,84 106 Seg Scaborgium (263)	1 c Technetium (98) 75 Re Rbenium 186,207 107 Bh Bohrium (262)	Ru Ruft-caura 101,07 76 Os Osmium 190,23 108 Hassium (265)	Rh Rhodium 102.90550 77 17 17 102.217 109 Mt Meitnerium (266)	Pd Palladium 106.42 78 Pt Platmann 193.078 110	Ag Silec 107,8682 79 Au Gall 196,96655 111	Cd Cadinsium 112.411 80 Hg Mercury 200.59 112 (277)	In todium 114.818 81 TI Thallium 204.3833 113	Sn Ta 118,710 82 Pb Lead 207,2 114	SD Antimosty 121.760 83 Bi Bismuth 208.98038	Te Tellariam 127.60 84 Polonium (209)	L todine 126.90447 85 At Assatine (210)	Xe Xence 131.29 86 Rn Radon (222)
Rb Rubdum 85.4678 55 Cs Cesium 132.90545 87 Fr Franciam (223)	Sr Steonflum 87.62 56 Ba Barlum 137.327 88 Ra Raclium (226)	Y Steven 88,00585 57 La Lanthornem 138,9055 89 Acc Accainam (227)	Zr Zhronian 91.224 72 Hf Hafnum 178.49 104 Rf Rutherfordium (261)	Nb Nickan 92.90638 73 Ta Tantaun 180.9479 105 Db Dabaian (262)	Mo Molybdenam 95,04 74 W Tranguten 183,84 106 Sg Scabengtum (263)	1 c Technetium (98) 75 Re Rhenium 186,207 107 Bh Bohrium (262)	Ru 8uthcasura 101,07 76 Os 0xmium 190,23 108 Hassium (265)	Rh Rhadium 102.90550 77 17 192.217 109 Mt Meinerium (266)	Pd Palladium 106.42 78 Pt Platamen 195.078 110 (269)	Ag Silver 107.8682 79 Au Goal 196.96655 111 (272)	Ca Cadrisium 112,411 80 Hg Mercury 200,59 112 (277)	In 1dian 114.818 81 Tl Thaffiam 204.3833 113	Sn Ta 118.710 82 Pb Lead 207.2 114	SD Antincety 121.760 83 Bi Bisemath 208.98038	Tetturiam 127.60 84 PO Polonium (209)	I 126.90447 85 At Astatine (210)	Xe Xence 131.29 86 Rn Radon (222)
Rb 85.4678 55 CS Cesium 132.90545 87 Fr Franciam (223)	Sr Steontium 87.62 56 Ba Barliam 137.327 88 Ra Radiaan (226)	X 57 La Lanharasse 138.9055 89 AC Actaium (227)	Zr Zhronian 91.224 72 Hafaium 178.39 104 Rf Rutherfordium (261)	Nb Nickan 92,90638 73 Ta Tanikan 180,9479 105 Db Dabaian (262) 58	Mio Moly Scheman, 95,04 74 W Tragues 183,84 106 Seg Scaborgium (263)	1 c Technetium (98) 75 Re Rhenium 186,207 107 Bh Bohriam (262)	Ru Rudecaura 101.07 76 Os Ocentum 190.23 108 Hs Hassium (265)	Rh Rhadium 102.90550 77 1r Irdam 192.217 109 Mt Meinerium (266)	Pd Palladium 106.42 78 Pt Platment 195.078 110 (269) 63	Ag Silver 107.8682 79 Au Gelt 196.96655 111 (272) 64	Ca Cadrisium 112,411 80 Hgg Mercary 200,59 112 (277)	In 1ddian 114.818 81 Th Thalliam 204.3833 113 666	Sn Ta 118.710 82 Pb Lead 207.2 114	Sb Animcey 121.760 83 Bi Bianuch 208.98038 68	Tetturiaam 127.60 84 Po Polonium (209)	1 126.90447 85 At Astatine (210) 70	Xe Xence 131.29 86 Rn Radon (222) 71
Rb 85.4678 55 CS Cestum 132.90545 87 Fr Francium (223)	Sr Smonthant <u>87.62</u> 56 Ba Batiam 137.327 88 Ra Radiam (226)	т 88:00585 57 La 138:9055 89 Ас Астайат (227)	Zr Zhronien 91.224 72 Hi Hafniam 178,49 104 Rf Rutherfordium (261)	Nb Ničkan 92.90638 73 Tamiam 180.9479 105 Db Dubnam (262) 58 Ce	M10 Molybdenary 95.04 74 W Transfers 183.84 106 Sgg Scaborgium (263) 59 Pr	1c Technetium (98) 75 Re Rhenium 186.207 107 Bh Bohriam (262) 60 Nd	Ru Ruteauro 101.07 76 Os Ourieuro 190.23 108 Hs Hassiene (265) 61 Pm	Rh Rhadium 102.90550 77 17 102.217 109 Mt Meinerium (266) 62 Sm	Pd Pulladium 106.42 78 Pt Paramene 195.078 110 (269) 63 Fu	Ag Silver 107.8682 79 Au Gal 190.96055 111 (272) 64 Gd	Ca Calcians 112.411 80 Hgg Mercury 200.39 112 (277) 65 Tb	In 114.818 81 Th Thallium 204.3833 113 66 Dv	ла 118.710 82 Рb 1.aad 207.2 114	SD Animcey 121.760 83 Bi Bismuch 208.98038 68 Fr	Te Tellariam 127.60 84 Polonium (209) 69 Tm	1 126.90447 85 At Astatine (210) 70 Yb	Xe Xenon 131.29 86 Rn Radon (222) 71 Ln
Rb Rabidum 85.4678 55 C8 Cesium 132.90545 87 Fr Franciam (223)	Sr Stronthant 87.62 56 Ba Batiant 137.327 88 Ra Ra (226)	хулин 88:00585 57 La 1алдитин 138:9055 89 Ас Асстанин (227)	Zr Zhronian 91.224 72 Hi Hafnian 178,39 104 Rf Rutherfordium (261)	Nb Ničkan 92.90638 73 Ta Tamiam 180,9479 105 Db Dubnam (262) 58 Ce Cram	MIO Molybdenam 95.04 74 W Tragues 183.84 106 Sg Seaborgium (263) 59 Pr Prasecdynauan	1 c Technetium (98) 75 Re Rhenium 186.207 107 Bh Bohrican (262) 60 Nd Necodymiam	Ku Ruftcastra 101.07 76 Os Ocenium 190.23 108 HS Hassen (265)	Rh Rhadium 102.90550 77 17 17 192.217 109 Mt Meinerium (266) 62 Sm Samariam	Pd Pulladium 106.42 78 Pt 195.078 110 (269) 63 EU Europium	Ag Silver 107.8682 79 Au G4 190.960555 111 (272) 64 Gd Gd Gd	Ca Cadroiant 112.411 80 Hgg Mercury 200.39 112 (277) 65 Tb Tebam	In Indian 114.818 81 Th Thalliam 204.3833 113 66 Dy Dysprosean	ла 118.710 82 Рb 1.and 207.2 114 67 Но Новниал	Sb Antimicary 121.760 83 Bi Bisanath 208.98038 68 Er Edbum	Te Tellariam 127.60 84 Polonium (209) 69 Tm Thuliam	1 126.90447 85 At Astatine (210) 70 Yb Yterbiam	Xe Xenon 131.29 86 Rn Radon (222) 71 Lu Lutchura
Rb 85.4678 55 C8 Cesium 132.90545 87 Fr Francium (223)	Sr Smontani 87.62 56 Ba Bariani 137.327 88 Ra Radiani (226)	хжил <u>88:005855</u> 57 La 138:9055 89 Ac Actainam (227)	Zr Zhronau: 91.224 72 Hf Hafnian 178,49 104 Rf Rutherfordium (261)	Nb Ničkan 92.90638 73 Ta 180,9479 105 Db Dubnam (262) 58 Ce Ceam 140,116	M10 Milly Schamm, 95,04 74 W Tranguest 183,84 106 Sg Scaborgium (263) 59 Pr Praseedymaum 140,90765	1 c Technetium (98) 75 Re Rhenium 186.207 107 Bh Bohrican (262) 60 Nd Necodymiam 144.24	Ru Ruteauro 101.07 76 Os Oceaniem 190.23 108 Hs Hassenn (265) 61 Pm Prometham (145)	Rh Rhadium 102.90550 77 17 102.217 109 Mt Meinerium (266) 62 Sm Samarium 150.36	Pd Pulladium 106.42 78 Pt 195.078 110 (269) 63 Eu Europium 151.964	Ag Silver 107.8682 79 Au G41 190.96655 111 (272) 64 Gd Sddmmm 157.25	Ca Cadroiant 112.411 80 Hgg Mercuay 200.39 112 (277) 65 Tb Tebam 158.92534	In Indian 114.818 81 Th Thailian 204.3833 113 666 Dy Dysprosian 162.50	ла 118.710 82 Рb 1.mad 207.2 114 67 Но Ноплиат 164.93032	Sb Antimicary 121.760 83 Bi Bisanuth 208.98038 68 Er Editum 167.26	1 ce Tellariam 127.60 84 Polonium (209) 69 Tm Tudiam 168.93421	1 126.90447 85 At Assatine (210) 70 Yb Yterbiuma 173.04	Xe Xenom 131.29 86 Rn Radon (222) 71 Lu Lutchum 174.967

The Periodic Table of the Elements

(Stanford, 2011)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ceram 140.116	Praseodymium 140.90765	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolmum 157.25	Terbium 158.92534	Dysprosiana 162.50	Holmium 164.93032	Erbium 167.26	Thulium 168.93421	Ytterbiam 173.04	Lutetium 174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium 232.0381	Protactinium 231.03588	Uranium 238.0289	Neptunium (237)	Plutonium (244)	Americiam (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)

RRAM: Common Classification

Different materials & switching characteristics

RRAM: Switching

RRAM: Cell and Array Architecture

3D Vertical Cross Point RRAM

RRAM: Variability

Temporal and spatial variability

RRAM: Reliability

Endurance & Retention

RRAM: Prototypes

SanDisk-Toshiba RRAM (ISSCC, 2013)

T.-Y. Liu et al. (JSSCC, 2014)

- By far, largest density RRAM test chip
- Relatively slow performance (NAND Flash alternative)

RRAM: Prototype

Micron-Sony CB-RAM (ISSCC, 2014)

- Target application: storage class memory
- Endurance target: >10⁶ cycles
- Raw BER
 - \circ Endurance <3X10⁻⁵ at 10⁶ cycles
 - Retention: $<2X10^{-4}$ at 10 years, 70°C, 10⁴ cycles
 - Read disturb: <2X10⁻⁵ at 10⁶ reads

Acceptable for SCM?

Memristor

nature

Vol 453 1 May 2008 doi:10.1038/nature06932

LETTERS

Nature v.453, p.80 (2008)

The missing memristor found

Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹

RRAM (and also MRAM and PCM) may show memristic behaviors (analog memory characteristics)

Ferroelectric Memory FRAM FeRAM Ferroelectric FET FeFET

Conventional FRAM

Perovskite crystals (PZT, SBT)

Internal electric dipole reversibly switchable by electric field

SBT: strontium bismuth tantalate

1T-1C (C=FeCAP)

Kim et al. (IEDM, 2005)

Ramtron (2012)

Conventional FRAM

In production, but not scaling beyond 130nm

Fundamental scaling limit requires 3D FeCAP (very challenging)

FeFET

Polarization of ferroelectric layer over the Si channel modulates the threshold voltage (V_{th}) \rightarrow <u>1T FRAM</u>

FeFET: Renewed Hope for Scaling

Orthorhombic phase of HfO₂

Hype? Promise? Reality? Opportunities?

Emerging Memory Reality Check

There is no universal memory

Opportunities in tunability (system differentiation, user experiences)

Positioning Emerging Memory

Need to understand the application space

Emerging Memory Pathfinding for Sub-10nm CMOS

MRAM as an example because of its NV-RAM attributes and recent advances at major IC manufacturers

CMOS Logic Scaling

Intrinsic FinFET scaling is limited

Logic scaling is about standard cell architecture innovation

Source: A. Steegen, 2018 ITF Belgium

Parasitic R & C Impact

MOL and BEOL parasitic R & C causing more delays than intrinsic transistor delay

Negatively impacting essentially all types of resistance-based memory designs (MRAM, RRAM, PCM)

SRAM Scaling

Relatively more expensive at advanced nodes FinFET SRAM near the end of scaling

High-density 6T SRAM: ~550F² at 7nm Expect ~1000F² at 5nm

F: node number

Kang & Park, IEDM 2017

MRAM Pathfinding as an SRAM Alternative

Reduce last-level-cache area and energy consumption

A 22nm case study by Toshiba

Toshiba, ISSCC 2016

Cell Design Challenge: Supply Current

CMOS supply current much smaller at advanced nodes → Requiring low switching current and low MTJ resistance

Park et al., VLSI Symp. 2018

Reliability Challenge: Endurance

Intrinsic endurance practically unlimited

However, endurance sensitive to switching voltage & MgO TDDB

Example Use Case	Memory Size (Mbyte)	Assumptions	10 Year Endurance Requirement			
L2 Cache	1	10 ⁸ access/sec, 40 % write traffic	7.7 × 10 ¹¹			
L3 Cache	6	10 ⁷ access/sec, 40 % write traffic	1.3 × 10 ¹⁰			
Unified eNVM	32	32 1.6 GB/sec, 64-bit IO, constant write traffic				
IOT Unified	1	400 MB/sec, 64-bit IO, 1 % duty cycle	1.3 × 10 ⁹			
Repeated Address Attack	N/A	50 ns attack period, 100 % duty cycle	6.3 × 10 ¹⁵			

Common memory applications < 10¹²

Kan et al., IEDM 2016 & TED 2017

Cell Architecture Pathfinding for 7nm

Bitcell (X,Y): $(2P_{M1}, 2P_{fin})$ Area (2-fin cell): ~140 F² MRAM:SRAM \rightarrow ~0.25X (for area)

Bitcell (X,Y): (2CPP, $3P_{fin}$) Area (6-fin cell): ~210 F² MRAM:SRAM \rightarrow ~0.35X (for performance)

Prospect

Kang, 2014 VLSI Symp. & 2019 CIES Tech Forum

From Research to Commercialization

Semiconductor devices typically require >~10 years of R&D (e.g. FinFET)

Any fundamental showstopper?

Thank You.

For questions and feedbacks, contact kang@qti.qualcomm.com