IEEE SOLID-STATE CIRCUITS SOCIETY Where ICs are in IEEE

This Distinguished Lecture is sponsored by the IEEE Solid-State Circuits Society

SSCS Membership delivers:

- ✓ Educational Development
- ✓ Networking with peers
- ✓ Leadership opportunities
- ✓ Tools for career growth
- ✓ Recognition for your achievements

SSCS Education Material:

- ✓ All the ISSCC Tutorials and Short Courses of the past few years: free access to all SSCS members
- ✓ Distinguished Lecture Program: exclusive to SSCS members
- ✓ Webinars: free access to all SSCS members

- ✓ Membership is only \$22 for 2016;
- ✓ \$11 for students!
- ✓ Join at www.sscs.org!

Other SSCS Member Benefits:

- Subscription to SSCS Magazine (including tutorials in every issue), JSSC, others
- Registration discounts at SSCS Conferences: ISSCC, VLSI, CICC, ASSCC, ESCIRC
- ✓ Student Travel Grants (for SSCS Conferences)
- ✓ Pre-doctoral Achievement Awards
- ✓ Coming Soon: VLSI x and SSCS MOOC Series

Any feedback /suggestions/ideas on SSCS Education?

Email Ali Sheikholeslami, SSCS Education Chair:

Time-Varying Filtering Techniques for RF Front-Ends

Sudhakar Pamarti

Professor, Electrical and Computer Engineering, University of California, Los Angeles

Acknowledgements

Research done by several graduate students...

- ➢Dr. Mansour Rachid
- ➢ Dr. Sameed Hameed
- ≻Dr. Neha Sinha
- ≽(soon to be Dr.) Shi Bu

Research sponsored by...

National Science Foundation

Outline

- Problem and prior art
- Filtering-by-Aliasing
 - Concept of using sampling aliases for sharp filtering
 - Designing FA filters: some examples
- Example applications
 - Agile RF front ends
 - Spectrum scanners

The RF Front End Problem

Aliasing Is The Problem

- Blockers alias upon sampling & corrupt the desired signal
- Age-old wisdom: <u>sharp filtering prior to sampling to avoid aliases</u>!
- Filtering is difficult
 - Passive filters (SAW/BAW/MEMS...) are linear but bulky, not programmable
 - Active filters are programmable, but not linear enough

Active RF Front-End Prior Art

Outline

Problem and prior art

Filtering-by-Aliasing

- Concept of using sampling aliases for sharp filtering
- Designing FA filters: some examples
- Example applications
 - Agile RF front ends
 - Spectrum scanners

Filtering by Aliasing (FA)

Pre-condition signal such that sampling aliases combine destructively!

Filtering by Aliasing: Time-Domain

Effective impulse response, g(t), can be precisely engineered:

- Use a simple filter, h(t), with good linearity and low power consumption
- Use advanced D/A converter techniques to realize d(t) precisely

FA: Frequency Domain $x(t) \xrightarrow[d(t) = d(t+Ts)]{x(t)} \xrightarrow[d(t) = d(t+Ts)]{y(t)} \xrightarrow[d(t) = d(t+Ts)]{y(t)}$

FA: Frequency Domain x(t) -

<u>y(t)</u>

@t = nTs

h(τ)

d(t) = d(t+Ts)

- y[n]

FA: Frequency Domain x(t) -

<u>y(t)</u>

@t = nTs

h(τ)

– y[n]

*

FA: Frequency Domain x(t) -

*

{-----

X(f)

S. Pamarti

y(t)

@t = nTs

h(τ)

d(t) = d(t+Ts)

– y[n]

Effective impulse response, g(t), can be precisely engineered:

- Use a simple filter, h(t), with good linearity and low power consumption
- Use advanced D/A converter techniques to realize d(t) precisely

Outline

Problem and prior art

Filtering-by-Aliasing

- Concept of using sampling aliases for sharp filtering
- Designing FA filters: some examples
- Example applications
 - Agile RF front ends
 - Spectrum scanners

FA Example #1: Active RC

$$g(\tau) = d(-\tau) \cdot h(\tau) = \frac{1}{C[R_s + R(-\tau)]} \quad 0 \le \tau < T_s$$

- > Equivalent filter, $g(\tau)$, is simply an analog FIR filter
- Standard discrete-time FIR design methods apply, after discretization

FA Example #1: Active RC

Time-Varying Resistor Implementation

R(t) is switched in steps → Images in freq response
 High enough switching rate → Images below filter floor

FA Filter Example #2: Passive RC

FA Filter Example #2: Passive RC

$$x(t) \xrightarrow{R(t) = R(t+T_s)} y(t) \xrightarrow{y(t)} y(t)$$

$$x(t) \xrightarrow{R(t) = R(t+T_s)} y(t) \xrightarrow{y(t)} y(t)$$

$$x(t) \xrightarrow{R(t) \to G(e^{j\Omega T_{CK}}) \cdot sinc\left(\frac{\Omega T_{CK}}{2}\right)} \xrightarrow{\varphi} y[n]$$
Switching at
$$f_{CK} = 1/T_{CK}$$

$$G(z) = \frac{\alpha_0 + \alpha_1 \beta_0 z^{-1} + \alpha_2 \beta_1 \beta_0 z^{-2} + \dots + \alpha_{K-1} \beta_{K-2} \cdots \beta_0 z^{-(K-1)}}{1 - \beta_{K-1} \cdots \beta_0 z^{-K}}$$

where $\alpha_\eta = \frac{T_{CK}}{R(-\eta T_{CK})C}, \beta_\eta = 1 - \alpha_\eta$, and $K = \frac{T_S}{T_{CK}}$

Discrete-time filter design techniques can be used to chose R(t) to achieve desired filter response

FA Filter Example #2: Passive RC

Example resistor variation

S. Pamarti

UCLA

Outline

Problem and prior art

Filtering-by-Aliasing

- Concept of using sampling aliases for sharp filtering
- Designing FA filters: some examples

Example applications

- Agile RF front ends
- Spectrum scanners

Agile RF Front-End: Requirements

- BPFs with programmable center frequency, BW
- Antenna impedance matching
- Blocker suppression/tolerance
 - Sharp filtering, good linearity, and low noise figure

FA Bandpass Filter

[Hameed ISSCC 2016]

LO mixing converts sharp FA LPF to a sharp FA BPF

Reflection $\Gamma(t) = \frac{V_R(t)}{V_I(t)} = \frac{R(t) - R_s}{R(t) + R_s}$

 $V_I(t) = \sin(2\pi f_0 t) \Rightarrow V_R(t) = \Gamma(t)\sin(2\pi f_0 t)$

 $V_I(t) = \sin(2\pi f_0 t) \Rightarrow V_R(t) = \Gamma(t)\sin(2\pi f_0 t)$

 $V_I(t) = \sin(2\pi f_0 t) \Longrightarrow V_R(t) = \Gamma(t)\sin(2\pi f_0 t)$

Improving Stop-band Attenuation

• Increase A_{stop} with longer $g(\tau)$?

Improving Stop-band Attenuation

- Increase A_{stop} with longer $g(\tau)$?
 - Unfiltered aliasing frequency bins
 - Sampling period same as length of $g(\tau)$

S. Pamarti

Time-Interleaved FA

[Hameed ISSCC 2017]

Use time-interleaving to maintain sampling period: $e^{at=2nT_{t}}$

Time-Interleaved FA

Sampling period is T_s :

But $g(\tau)$ length is $2T_s$:

$$g(\tau) = \frac{R(T_s - \tau)}{\left[R(-\tau) + R(T_s - \tau)\right]} \frac{1}{\left[R_s + R(-\tau) \parallel R(T_s - \tau)\right]C}$$
$$0 \le \tau \le 2T_s$$

Time-Interleaved FA

Matching is easier - S₁₁ ~ f(R(t) // R(t-T_s)) Much higher A_{stop}

-70dB A_{stop} with 10b RDAC dynamic range

UCLA

S. Pamarti

LPTV Resistor

Built as 13b binary scaled resistor DAC

- Switch resistance : Poly resistance set to 1:4

Circuit parasitics limit dynamic range

LPTV Resistor

Alleviated in differential configuration

- Corner freq. constant with addition of dummies

Baseband Integrator

- Inverter-based op-amp
 - Self-biased due to periodic reset
- Feedback caps implemented as ping-pong structures
 - Capacitors implemented using MIM caps

UCLA

UCLA

Implemented IC

Filter Programmability

LO Programmability

Receiver Linearity

Linearity vs. Offset from LO, IIP_3 ($\Delta f=12MHz$) vs. LO for 10MHz BW Filters

Wideband S_{11} and Blocker NF

Comparison with Prior Art

Metric	[1]	[2]	[3]	[4]	This Work
Architecture	N-path	N-path + DT	Mixer-first with	FA	FA with Time
		filtering	Noise Cancelling		Interleaving
Technology	65nm	40nm	40nm	65nm	65nm
RF Frequency (GHz)	0.1-1.2	0.1-0.7	0.08-2.7	0.1-1	0.1-1
RF Input	Differential	Differential	Single-ended	Single-ended	Differential
BW (MHz)	8	6.4-9.6	4	2.5-40	2.5-40
Stop-band Rejection	59dB	>70dB	NA	>35dB (2.5×BW)	>45dB (1.7×BW)
(Transition BW)	(12×BW)	(~8.5×BW)		>50dB (6.5×BW)	>70dB (4×BW)
In-band IIP ₃	-12	NA	-20	+1	+8
(dBm)					
Out-of-band IIP ₃	+26	+24	+13.5	+17	+21
(dBm)	(Δf=6.25×BW)	(∆f=4.7×BW)	(∆f=20×BW)	(∆f=1.2×BW)	(∆f=1.2×BW)
Out-of-band IIP ₂	NA	NA	+55	+60	+64
(dBm)					
B _{1dB,CP}	+7	+14.7	-2	+0.7 (Δf=2×BW)	+9.5 (Δf=2×BW)
(dBm)	(Δf=6.25×BW)	(∆f=4.7×BW)	(∆f=20×BW)	+8 (∆f=4×BW)	+13 (∆f=4×BW)
S ₁₁ (dB)	-5 to -8	<-1 0	<-8.8	<-10	<-9
Gain (dB)	25	40	72	18.9	23
NF (dB)	2.8	6.8-9.7	1.9	6.5	7
Supply Voltage (V)	1.2	1.2/1.6	1.2/2.5	1.2/1	1.2/1
Power Consumption	15-48mA	59-105mW	27-60mA	56-62mA	64-84mA
Active Area (mm ²)	0.27	2.03	1.2	2	2.3

Further Evolution

□ Noise cancellation in time-varying receivers

- Time-varying noise cancellation path
- 3.2dB NF demonstrated
- JSSC'20

- □ Channel aggregation
 - Modifications to make input impedance timeinvariant
 - > Allow multiple channels to operate in parallel
 - ➢ More details in ISSCC'21

Outline

Problem and prior art

Filtering-by-Aliasing

- Concept of using sampling aliases for sharp filtering
- Designing FA filter: some examples

Example applications

- Agile RF front ends
- Spectrum scanners

Spectrum Scanner: Requirements

- > BPFs with programmable center frequency, RBW
- Excellent linearity needed
- Excellent harmonic rejection needed
- Low power consumption

FA-Based Spectrum Scanner

Amplifier-less, passive implementation -> linear, low power

Linearity & Low Power

Low power, excellent linearity

Sinusoidal mixing desired!

Sinusoid = square-wave x envelope

Include envelope in the design of d(t)

Change R(t) to $\tilde{R}(t)$ to realize $\tilde{d}(t)$

Chip Micrograph

Frequency Bin Tunability

Sample Filter & Linearity

Measured Sensitivity

Comparison with Prior Art

	This work	Goel [1]	Alink [2]	Ingels [3]-[4]	Yazicigil [5]
Technology	65nm	130nm	65nm	40nm	65nm
Architecture	Filtering by Aliasing	Dual Up/Down Conversion	Cross- Correlation	Digital and Analog Multi- band Sensing	Compressive Sensing
Frequency Span (GHz)	0 - 1	0.1 - 6	0.3 - 1	0.5 – 2.5	2.7 - 3.7
Power (mW)	< 8	227 (697ª)	36-61	33-99 (66-143ª)	81
OOB IIP3 (dBm)	> +31	+10	+5	-16	N/R
OOB IIP2 (dBm)	+70	+40	N/R	+53	N/R
Sensitivity (dBm/Hz)	< -142	-145	-158 (-172 ^b)	-167	-142
SFDR in 1MHz RBW (dB)	75	63	69 (78)	61	N/R
Analog RBW (MHz)	10,20 ^c	0.4-11	20	0.2-20	10,20
Scan Time for 20MHz Analog RBW & 1GHz Span (us) ^d	50	50	50	50	4.4

Summary

- > Can use sampling aliases to our benefit
 - Sharp, integrated, programmable filtering
 - Excellent linearity and low power consumption
- Demonstrated agile RF front ends & spectrum scanners
 - Best in class in filter sharpness, linearity, and power
- Lot of potential
 - Can be extended to other circuit topologies and applications
 - Need good analysis techniques

Selected FA Related Publications

- 1. M. Rachid, S. Pamarti, B. Daneshrad, "Filtering by Aliasing", *IEEE Transactions on Signal Processing*, vol. 61, no. 9, May 2013, pp. 2319 2327.
- 2. N. Sinha, M. Rachid, S. Pamarti, "An 8mW, 1GHz Span, Passive Spectrum Scanner with +31dBm Outof-Band IIP3," *IEEE 2016 RFIC Symposium*, May 2016, pp. 1286-1289.
- 3. H. Sameed, N. Sinha, M. Rachid, S. Pamarti, "A Programmable Receiver Front-End Achieving >17dBm IIP3 at <1.25xBW Frequency Offset," *IEEE 2016 ISSCC*, pp. 446-447, February 2016.
- 4. S. Hameed, S. Pamarti, "A Time-Interleaved Filtering-By-Aliasing Receiver Front-End with >70dB Suppression at <4xBandwidth Frequency Offset," *IEEE 2017 ISSCC*, pp.418-419, February 2017.
- N. Sinha, M. Rachid, S. Pavan, and S. Pamarti, "Design and Analysis of an 8 mW, 1 GHz Span, Passive Spectrum Scanner with >+31dBm Out-of-Band IIP3 Using Periodically Time-Varying Circuit Components, *IEEE JSSC*, pp. 2009-2025, August 2017.
- 6. S. Hameed, S. Pamarti, "Design and Analysis of a Programmable Receiver Front End Based on Baseband Analog-FIR Filtering Using an LPTV Resistor," *IEEE JSSC*, 2018, IEEE Explore Early Access.
- 7. S. Hameed, S. Pamarti, "Impedance Matching and Re-radiation in LPTV Receiver Front-Ends: An Analysis Using Conversion Matrices," *IEEE TCAS-I*, 2018, IEEE Explore Early Access.

