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Machine capability is at an inflection point
Game PlayVision
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Speech

Human 
Performance



But, real-world deployment is challenging

DARPA Robotics 
Challenge

A young boy is 
holding a baseball bat

You go first.
No, you go first.

What will going forward require?
What can technology developers do?



ML is about modeling how semantics are encoded in data

STRUCTURE in data helps us build ‘better’ models

Images (SPATIAL structure) Language (SEQUENTIAL structure) 
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E.g., Long-Short-Term Memory (LSTM)E.g., Convolutional Neural Net. (CNN) E.g., Flow sculpting [D. Stoecklein, Nature’17]

Inverse problems (PHYSICS) 
Ex. Fluid flow:



Introducing structure & multiple-modalities in sensor data

PHYSICALLY-INTEGRATED (PI) SENSING: the state and (inter)actions of 
physical objects says something about the activities and underlying intentions

→ structure data around states and interactions of ‘things’

Directly associating sensor data with embedded signals
enables invariant semantic structure & access to diverse modalities



Contrast: PI vs. remote sensing (vision)

Width
(detect components)

feature/correlation
maps

Depth (compose components into semantics)

Today’s deep learning:

1st Layer 2nd Layer 3rd Layer

[H. Lee, ICML 2009]



Some questions
1. What kind of structure is relevant and how much is needed?

• Synthesized human-activity scenes & actions emulate different forms of sensing
• Enable studies on generalization, sample efficiency, transferability 

2. What models (and training algorithms) exploit that structure?
• Evaluate sensor-specific features and embeddings for efficiency
• Explore models for sensor fusion (including with remote sensing) 

3. What sensing technologies preserve/provide such structure
• Develop large-scale, form-fitting (wireless) sensing based on large-area electronics
• Develop architectures for in-sensor computing of features/embeddings

4. What computational architectures do these require?
• Structure in data → structure in models/computations → architectural specialization
• In-memory computing architectures (won’t go into this today)



Monte Carlo synthesis of human activities
SketchUp (scenes) Unity3D (actions)



How does PI-sensing affect sample efficiency?

[M. Ozatay, IEEE J-IoT 2018]

• PI feature extraction of 
human interactions

• Simple (hand-crafted) 
features, simple ensemble 
classifier

• Enhanced sample 
efficiency & accuracy

• Higher cost of sensor 
deployment



How much PI-sensing structure is needed?

Good enough

• Small number of PI sensors 
accounts for most of gains

• PI sensing with specific 
categories of objects 
improves perception  

• Perception value of categories 
transfers well

• Selective deployment is 
feasible (w/ remote sensing…)



How to leverage PI & remote sensing together (fusion)?

Conv. Layer 4 
(post activation)

Conv. Layer 5 
(post activation)

Vision Saliency Maps

Guitar
ID: 120 Location: (330,120) 

Board Game
ID: 157  Location: (332,123) 

Vision

PI

Isolated Features Integrated Features

[M. Ozatay, IEEE J-IoT 2018]

Vision

PI
(feed-forward information)



Generalized model for PI-vision fusion

Ex. Multi-modal Feature Map
(concatenated with conv-net output channels in each layer)

Vision

Embedded 
Sensors

(domain transform)

(multi-modal
feature maps)

• Shared representations (feature maps) based on spatial association of PI sensing

>8× fewer samples
Fusion 
Models

Vision-only 
modelsAc

cu
ra

cy

Number of Training Samples

E.g., Enhanced learning sample efficiency 
with sensor fusion

Feed-forward path

Feature 
extraction



Let me pause

Please ask questions you think might be helpful



Multi-modal, form-fitting sensing to preserve structure

(Applied 
Materials, 2011)

Ex.: large-area electronics (LAE):
→ From displays to large-scale, 

form-fitting transducers
Pressure
sensor

Image 
sensor

Solar 
harvester

Thermo 
harvester

U. Tokyo



LAE sensing systems
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Microphone Array
[L. Huang, VLSI Symp. 2015]

Radios on Wallpaper
[L. Huang, ISSCC 2013]

3D Gesture Sensing
[Y. Hu, ISSCC 2014]

High-density, self-powered
Strain Sensing

[Y. Hu, VLSI Symp. 2013]

Chopper-
Stabilized LNA

Compressive-
sensing

Acquisition

Active EEG Processing
[T. Moy, ISSCC 2016]

Thin-film
image sensors

TFT 
compression 

circuits

Projector

Imaging & classification
[W. Rieutort, ISSCC 2015] E.g., sound-based activity detection



Hybrid LAE-CMOS systems
a-Si TFT ZnO TFT Si CMOS (130nm)

Mobility
(μe/μh)

μe: 2 cm2/Vs 
μh: 0.05 cm2/Vs

μe: 12 cm2/Vs 
μh: <1 cm2/Vs

μe: 1000 cm2/Vs
μh: 500 cm2/Vs

tGate-oxide 280nm 40nm 2.2nm

VDD 20V 6V 1.2 V

CGD/GS 3.3 fF/μm 9.9 fF/μm 0.34 fF/μm

fT 1MHz 15MHz 150 GHz

CMOS 
readout/
compute

LAE 
many 

sensors

Large number of 
interfaces

Small number of 
interfaces

CMOS 
readout/
compute

LAE 
many 

sensors

TFT 
I/F 

circuits

System Challenge: it’s the interfaces, stupid



Interfacing information
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Embedded compressed sensing

Compressed 
Sensing (K=3)

Sequential 
Scanner

Active 
Matrix

Tactile Sensing Exhibits Sparsity
(e.g., strain sensing for structural monitoring)

103 Sensors
105 Sensors
107 Sensors

LAE Domain CMOS Domain

TFT switches implement 
sensor-current 
superpositions

[L. Aygun, ISSCC 2019]



Scalable force-sensing system
Force Sensor Board TFT Compression Board TIA + ADC Board

Measured 
Resistance

Reconstructed
Resistance

[L. Aygun, ISSCC 2019]

0.7k𝛀𝛀RMS sensor 
reconstruction 
error 



Error-adaptive classifier boosting (EACB)

Fault-prone
Classifier 2

Fault-prone
Classifier N

Fault-free trainer
(on MCU)

Σ

Fault-prone
Classifier 1

Feed back from 
N-1 iterations

Σ

w1

w2

wN

[Z. Wang, ICASSP’14]

[Z. Wang, TCAS-I’15]

System Performance
(EEG-based Seizure Detection)

Mutual Information



Embedded weak classifiers

Non-volatile charge trapping 
stores model weights

M1 M2

M1

M2



Large-area image-detection system

DAQ 
SYSTEM/ 

PC

SENSOR ARRAY THIN-FILM CLASSIFIER

Projector

8x8cm photoconductor plane 
on glass

1cm

MB-GND

MS-

MB+

MS+

Weak TFT classifier branches 
on glass

Probe card for testing

Classification Performance:

tp: true positive rate
tn: true negative rate 

[W. Rieutort-Louis, ISSCC 2015]



LAE for wireless sensing

(effective aperture size)

→ Large D/𝛌𝛌 in 1-5 GHz regime
→ D on the order of wireless distance 



Giga-Hertz TFTs: self alignment

1. Unity Current Gain: 2. Unity Power Gain:

fT Modeling (XOV, L) fMAX Modeling (XOV, L)

[Y. Mehlman, DRC 2019]



Giga-Hertz TFTs: low-resistance gate

1. Unity Current Gain: 2. Unity Power Gain:

Frequency (Hz)
→ Focus on fMAX-limited circuit topologies

[Y. Mehlman, DRC 2019]



13.56 MHz RFID reader arrays
TFT Power 
Oscillator

[Y. Mehlman, SSCL 2018]



13.56 MHz RFID reader arrays

[Y. Mehlman, SSCL 2018]

Effective 
circuit

TFT-based LC Oscillator

Exploits high-quality LAE 
passives (inductor)



2.4 GHz reconfigurable antenna

208 TFT Switches
15

0μ
m9cm (~0.7λ at 2.3GHz)

2.5 μm-thick 
Au inductor

20kΩ Cr 
resistor

3000μm/1.4μm ZnO TFT

Cu Patch
(4.2×4.2mm)

Resonant 
RF Switch

Experimental Demonstration:

(208 ZnO TFTs at 2.4 
GHz in 9cm×9cm array)

• Tunability in frequency response, polarization, radiation 
pattern

• Monolithically integrable to large & flexible formfactors

[C. Wu, IEDM 2020]



2.4 GHz reconfigurable antenna

OFF state
ZnO TFT

Inductor

ON-state:
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Task-driven large-scale wireless sensing

Embedded 
Sensors

Vision 
Sensing
(semantic 

segmentation)

Antenna
Controller
𝒇𝒇−𝟏𝟏(𝒙𝒙)

𝒚𝒚
(sensor 
position) Reconfig.

Antenna
𝒇𝒇(𝒙𝒙)

�𝒚𝒚
(radiation
pattern)

Sensor-feedback 
on-line learning

Wireless 
Sensing

Vision-PI
Perception

(sensor fusion)(no analytical 
model)

Closed-loop Wireless Sensing:

• Embedded sensors introduce structure
o Signal invariance
o Spatial invariance

• Reconfigurable spatial accessing enables 
algorithmic control of sensing 

• Exploit sensor-data structure for feature 
extraction (sensor fusion models)



Models for high-dimensional antenna control
• Antenna control via CNN for modeling 2-D antenna physics (spatial semantics)

33

Target From 
Antenna

Target From 
Antenna

Model effective for learning 
antenna-control policy

Tr
ai

ni
ng

 lo
ss

Epoch

Target From 
Antenna

Example Antenna Radiation Patterns

Antenna
Controller
𝒇𝒇−𝟏𝟏(𝒙𝒙)

𝒚𝒚𝟏𝟏

𝒚𝒚𝟐𝟐

𝒙𝒙𝟏𝟏
(𝟐𝟐𝟐𝟐𝟐𝟐)

𝒙𝒙𝟐𝟐
(𝟐𝟐𝟐𝟐𝟐𝟐)

(CNN model)



Conclusions
The real world presents statistically-complex processes

⟶ structure in data is showing profound potential for enhancing learning

The real world presents rich structure
⟶ preserving real-world structure in sensor data can enhance machine perception

Preserving real-world structure requires specialized sensing technologies
⟶ large-area electronics (LAE) enables expansive, form-fitting sensing

Sensor-algorithm co-design enables structure and exploitation of structure
⟶ this will lead to specialized ML models for sensor fusion & task-driven control
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