Challenges in the Design of Integrated Circuits for Wireless Power Delivery and Information Transfer in Implantable Medical Applications

> Zhihua Wang, IEEE Fellow Institute of Microelectronics, Tsinghua University Mobile/WeChat: +86 13501703 Mail: Zhihua@Tsinghua.edu.cn

Context

- Medical devices vs Semiconductors industries
- How to develop a medical instrument, equipment, or device
 Design considerations of a transceiver used for implemented medical device
- The possible application and research directions of the Wireless
 Transceiver
- Wireless Power Transfer for Miniaturized Medical Devices

Similar annual sales of top 20 companies , but different in \cdots

Rank	Medical Device	US\$ B	Rank	Semiconductor	US\$ B
1	Medtronic plc	28.8	1	Samsung Electronics	61.2
2	Johnson & Johnson	25.1	2	Intel	57.7
3	GE Healthcare	18.3	3	SK Hynix	26.3
4	Siemens Healthineers	15.2	4	Micron Technology	23.1
5	Becton Dickinson	12.5	5	Qualcomm	17.1
6	Cardinal Health	12.4	6	Broadcom	15.5
6	Philips HealthTech	12.4	7	Texas Instruments	13.8
8	Stryker	11.3	8	Toshiba	12.8
9	Baxter	10.2	9	Western Digital	9.2
10	Abbott Laboratories	10.1	10	NXP	8.7
	Sub total	156.3		Sub Total	245.3
	Others	232.8		Others	174.4
	Total Market	389.1		Total Market	419.7

How to develop a medical instrument, equipment, or device

With the Integrated Circuit is Enabling Technology

What is a medical device

- An instrument, apparatus, implement, machine, contrivance, implanted in vitro reagent, or other similar or related article, including a component part, or accessory which is:
 - Recognized in the official National Formulary
 Intended for use in the diagnosis of disease or other conditions
 - Intended to affect the structure or any function of the body of man or other animals

Classification of medical Devices

- Class I: General controls
- Class II: General controls with special controls • infusion pumps, and surgical drapes…
- Class III: General controls and premarket approval
 implantable pacemaker, pulse generators, automated external defibrillators...

A Portable and/or Implantable Device

 Electronic implantable medical devices (IMD) are designed to be fully or partially implanted in the human bodies through surgeries[1], and remain in bodies for several hours to several years or even permanently after the surgical intervention.

What is a Portable and/or Implantable Medical Device?

 R. Ritter, J. Handwerker, T. Liu, and M. Ortmanns, "Telemetry for Implantable Medical Devices," IEEE SOLID-STATE CIRCUITS MAGAZINE, vol. 6, Issue. 2, pp. 47-51, Spring 2014.

Design considerations of a transceiver used for implemented medical device

Well known implemented medical devices in clinical application

- cardiac pacemakers,
- implantable defibrillators,
- Cochlear implants,
- nerve stimulators (Functional Electrical Stimulation-FES),
- limb function stimulation,
- bladder stimulators,
- Sphincter stimulators,
- diaphragm stimulators,
- implantable infusion pumps,
- bio-monitoring devices such as the capsule endoscope.

Two options to power an implemented medical devices

miniature battery, and wireless power.

lowering the circuit power consumption,
to evaluate the available space for power supply components inside IMDs,

 The lifetime and reliability requirement, before choosing the power type.

Dower type. For example, a cardiac pacemaker relying on a reliable energy source may choose a battery, while an intraocular IMD usually choose wireless power since there is no room for a battery. The requirements on the wireless transceivers for different IMDS are quite diverse, in terms of data rate, signal transmission distance, and communication directions (single direction or two-way). The data integrity and bit-error rate (BER) tolerance are also of great importance, and the poor performances on these aspects may lead to harmful and even fetal malfunction.

implemented medical devices power and wireless data requirements

IMDs	Power consumption	Target data rate	Life-Time	Energy Source
Biomonitoring System	<100 µW	< 10 kb/s	a few days	Primary Battery
Capsule endoscope	<15mW	>1 Mb/s	10 Hours	Primary Battery
Pacemaker	<100 µW		10 Years	Primary Battery
Cardioverter-Defibrilator	Cont: <100 µW; Peak: 5-10 W		10 Years	Primary Battery
Cochlear Processor	200 μW	>100Kb/s	l Week	Rechargeable Battery
Hearing Aid	100-2,000 µW	200 kb/s	l Week	Rechargeable Battery
Retinal Implant	40-250 mW	> 500kb/s	NA	Inductive Power
Neural Recorder/Stimulator	1-100 mW	<1 Mb/s	NA	Inductive Power
Artificial Heart	10-100 W		NA	Inductive Power

Frequency band selection for implemented medical devices transceiver design

 considering the huge variation of EM signal propagation characteristics through human tissues with different frequencies. Based on FCC frequency regulations, the MedRadio band (composed of several inconcentive bands in 001-457 MHz) has superior propagation characteristics for implants, quiet channel properties, and worldwide availability, which are the primary reasons for its popularity for implant applications. The 2.45GHz SM band, with the mature circuit technologies, wide support for connecting to smart phones and other mobile devices, convenient access to the network, is also widely used for implantable medical systems.

Global Frequency bands	Category	Comments		
9 – 315 kHz	EU medical implant	Not so allocated outside EU		
13.56 MHz	ISM and SRD	RFID transponders for patient ID		
27.12 MHz	ISM and R/C	Congested		
40.68 MHz	ISM and SRD	Protocol restrictions in USA		
402 – 405 MHz	Medical Implant Comm.	Reserved for implants		
	ISM and SRD and			
2.45 GHz	microwave oven	802.11b/g (BT, Wi-Fi)		
5.8 GHz	ISM	802.11a		

IMD antenna design for IMDs

• IMD antenna design is also very challenging due to the size and shape restrictions, and the complicated working environment in human bodies. Since the electrical properties of the human tissues varies a lot with the patients' weight, age, posture changes, etc., the IMD antennas may adopt different sizes and shapes depending on the implantation location, which further limits the freedom of the designer

Implemented Transceivers for IMD

- 400 MHz RF transceiver
- · 2.4 GHz RF transceiver
- Reconfigurable Sliding-Intermediate-Frequency (IF) Transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee
- · 400 MHz/2.4 GHz TRX for dual-band communication

Asymmetrical RF Transceiver in 400MHz Band

- · The data transmission from IMD to EHD sometimes requires very high burst data rate, while the control/command information receiving requires much lower data rate
- · Asymmetrical wireless transceiver for IMD High speed transmitter, very careful low power design
- Low speed receiver
- TX: 3Mbps MSK modulation
 - High data rate → low duty cycle for battery
 MSK chosen for bandwidth, performance & circuit complex.
- RX: 64kbps OOK demodulation · Low circuit complexity

Supply voltage External Components # Type of RF link Bit Bate	2.5V~3.3V 7 Bi-directional	2.6V~3.2V 10	
Type of RF link	7 Bi-directional		
	3Mbps	Transmit only 2.7Mbps	
TX Power Consumption	3.9mW	5.2mW	
Dit Pata		none	
RX Power Consumption*	12mW		
MCU Power Consumption	240µW	none	
Image Compressor	Yes	none	
		0.35um CMO	
Die area	13.3mm ²	n/a	
	RX Power Consumption* MCU Power Consumption	Power Consumption* 12mW MCU Power Consumption 240µW Image Compressor Yes Image Compressor Power* 1.1mW Technology 0.18um CMOS	

Land PLL and	Parameters	Thiswork	ISSCC 2012	JSSC 2017	TCAS-I 2017
	CMOS Process	180 nm	90 nm	28 nm	90 nm
	Supply voltage/V	1.2	1.2	0.5/1	1
	Modulation	64-QAM	HS-OQPSK	GFSK	OOK
	Carrier Frequency/GHz	2.4	2.4	2.4	2.4
	Data Rate/Mbps	20	2	1	1
	EVM/%	11	2.3		5.5
	Power Consumption/mW	2.37	5.4	3.7	2.17
	Power Efficiency	120 pJ/bit	1.10 nJ/bit	1.14 nJ/bit	2.17 nJ/bit
1.1mm	TX Pout/dBm	-15	-1	0	0/-10
Liu, X. Huang, M. Vidojkovic, et al., "A 2.7r ternational Solid-State Circuits Conference W. Kuo et al., "A Bluetooth Low-Energy Ti ceiver, and TX/RX Switchable On-Chip M. 62, April 2017. J. Kim, C. S. Park, S. G. Lee, "A 2.4-GHz Te	e, Feb 2012, pp. 448-450 ansceiver With 3.7-mW atching Network," in IEEE	i. All-Digital Tra Journal of So	nsmitter, 2.75- lid-State Circu	mW High-IF E its, vol. 52, no.	biscrete-Time 4, pp. 1144-

2.4 GHz/400 MHz Dual-band TRX for IMD's									
25mm			This	work	ISSCC'14 [25]	ISSCC'15 [24]	ISSCC'15 [27]		
000000000000000000000000000000000000000	Dual-band simultaneously of	peration	,	í es	No	No	No		
HOMMETREX RE ME BASIL	Shared antenna		,	í es	No	No	No		
AMP 2.408 2.408 2.408	Protocol		proprietary	BLE 802.15.4	802.15.6	BLE 802.15.4	BLE		
4039812 RX F D	Frequency band	MHz	400-457	2400-2483.5	402-457	2400-2483.5	2400-2483.5		
Peg	Duta rate	Mbps	3-10	1/2/3	0.01-4.5	1/2	1		
	RX sensitivity @data rate	dBm	-86 @10Mbps	-94 @1Mbps	-93 @\$62.5kbps	-94 @1Mbps	-94.5 @1Mbps		
ADC ADC	TX maximum Pour	dBm	2	1.8	-10	1	0		
E Texture 18	RX Power Consumption**	mW	3.1	3.3	2.19	3.3	6.3		
000000000000000000000000000000000000000	RX energy efficiency	nJ/bit	0.31	1.1	0.33	1.65	6.3		
	TX Power Consumption**	mW	2.98 @-15dBm	3.18 @-19dBm	2.28 @-17dBm	4.2 @-2dBm	10.8* @0dBm		
	TX energy efficiency	nJ/bit	0.298	1.06	0.4	2.1	5.4		
	Technology	nm		65	40	40	40		
M. Vidojkovic et al., "A 0.33 nJ/b IEEE 802.15 6 foropretany-MICS/BM-band transceiver with scalable data -rate from 11 kb/s to 45 Mb/s for medical applications," in <i>ISSCC Dig. Tech. Papers</i> , Feb. 2014, pp. 170–171, YH. Liu <i>et al.</i> , "A 37 mW-Rk44 mW-7K fully integrated Blueconthow-encrypIEE 802.15 Af proprietary SOC with an ADPL-1baced last frequency of last compensational of nm OMOS; "INSSCC Dig. Tech. Papers, Feb. 2015, pp. 289–237, T. Sano <i>et al.</i> , "A 54 mW-7K fully integrated Blueconthow-encrypIEE 802.15 Af proprietary SOC with an ADPL-1baced last frequency of last compensation of nm OMOS; "INSSCC Dig. Tech. Papers, Feb. 2015, pp. 289–237, T. Sano <i>et al.</i> , "A 54 mW-7K full SSC CDig. Tech. Papers, Feb. 2015, pp. 249–241.									

The possible application and research directions of the Wireless Transceiver

Case studies

ICP SoC Implementation Result SoC Performance SUMMARY 0.18-µm 1P6M CMOS 3.04 mm x 2 mm H Technology 20 kH 400 MHz Transmit Die size oply voltage 3V(button batteries) 6 off-chip capacitors 24MHz crystal oscillator 145k Controller Off-chip components Logic gates Current consumption PMU 240 µA Sensor interf (communication i Average power (1 sample/second) 260µA SoC Die Photo

Implantable ECG monitoring system

- Implantable ECG monitor
 - Advantages: Easy for implant operation Small and single incision, subcutaneous insertion

 - Long-time continuous low-noise monitoring
 - Automatic abnormal ECG identification
 Recording in certain point
- Patient/APP Upload data
 - Start recording while feeling sick
- Doctor/APP
 - ECG data download and analysis Decide parameters for ICM algorithm

61

Wireless Power Transfer for Miniaturized Medical Devices

Wireless power transfer (WPT)

- Advantages
- Contactless, convenient to use 非接触、方便使用
- Waterproof, readily used in adverse conditions 防水、适用于恶劣环境
 Safe, easy to power implant and movable devices···安全、适用于植入式及移动物体

Power link ◆4 basic compensation arrangements for resonance: SS, SP, PS, PP ◆Variables in power link • Coupling factor (A) variations resulting from variable link distance, link misal orientation angle, etc.

V, 0

Coupling factor (k) variations resulting from variable link distance, link misalignment and
orientation angle, etc.
 Effective resistance (R_{ust}) variations resulting from loading, receiver efficiency and topo,
etc.
 Link efficiency in dependence (k and P) and only pools whop k and P.

Multiple coils technique

- Include: primary coil(L1) primary resonators (L2s)– secondary resonator(L3) secondary coil(L4)
- Novel primary multi-resonator coil
- Novel primary mean design
 all L2s have strong coupling with L1 by fully overlapping it
 one or more resonators that are best coupled with the Rx is/are the resonator(s) that transfer power to L3 and L4
 - obviate the need for the need for a tracking system or switching the coils

S. A. Mirbozorgi, Y. Jia, D. Canales and M. Ghovanloo, "A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control", IEEE Trans. BCAS, 2016

- Coupling factor and load variations will affect output voltage
- Objectives: output voltage regulation and high efficiency
 - Transmitter-side controls · Receiver-side controls
 - · Merge several stages into one stage, etc

Reconfigurable Rectifier for SP compensation

- Two modes: it is a full-bridge rectifier in 1X mode and a voltage doubler in 2X mode
- Local PWM loop in RX controls the duty cycle of mode-switching of the rectifier between 1X and 2X
- Suitable for Series-Parallel compensation

X. Li, C.-Y. Tsui, and W.-H. Ki, 'A 1356 MHz Wireless Power Transfer System with Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices'', IEEE JSSC 2015.

reconfigurable Rectifier for SS compensation

- Three modes: full-bridge rectifier in 1X mode, half-bridge rectifier in ½X mode and no current to load in 0X mode
- Local PWM loop in RX controls the duty cycle of mode-switching of the rectifier between 3 modes
 Suitable for Series-Series

compensation

) Tiri Tiri THE K

L. Cheng, W. H. Ki, T. T. Wong, T. S. Yim, and C. Y. Tsui, "A 6.78MHz 6W Wireless Power Receiver with a 3-Level 1X/45X/0X Reconfigurable Resonant Regulating Rectifier", ISSCC, 2016

15

Conclusion

The requirements of application are the source of innovation Long time persistence is the key fact of for success

U.S. Pertivatives Destroyeds. Class. D (2002)

A picture used by Chris Cloninger (Analog Devices Inc.) in a talk in Tsinghua University, 2008