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Shielding
• One of the primary EMI control techniques

• Depends on a EM tight enclosure

– Electrically small openings

– Conflicts with thermal and functionality

• We are reaching the practical limit of using 
shielding

– Emissions can easily occur in tens of GHz 

range

– At 10 GHz, lambda = 3 cm

• How effective is a slot opening??
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Slot Leakage vs Size and Wavelength
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What Can We do to Improve 
Shielding?

• Reduce hole size options limited

• Add thickness to metal?

– Honey comb air filters are effective to a 
certain frequency 

• Limited by wavelength

• Expensive
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Air Vent Geometry

1mm spacing 

between holes

TOTAL AREA = 

15cm x 15cm

Hole Sizes

4mm x 4mm

5mm x 5mm

7mm x 7mm

9mm x 9mm

Metal panel thickness 

varied 1 – 10mm



10 Mar 2015 Bruce Archambeault, PhD 6

Shielding performance for 9x9 mm holes

Array 15x15 holes = 18,225 sq mm total open
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Shielding performance for 7x7 mm holes

Array 18x18 holes = 15,876 sq mm total open
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Shielding performance for 5x5 mm holes

Array 25x25 holes = 15,625 sq mm total open
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Shielding performance for 4x4 mm holes

Array 30x30 holes = 14,400 sq mm total open
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Shielding performance for Various Hole sizes

Vent Area 15cm x 15cm
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Even additional thickness has 

limitations once ½ Lambda is reached
Shielding performance for 5x5 mm holes

Array of 25x25 holes
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So What Now?

• When Shielding fails us…..

• And we can not reduce the energy at the 
source

– Direct from the IC

– Signals needed for proper operation

• Absorption with lossy materials is the only 
alternative
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Material Parameters

• Sigma � electrical conductivity

• Eps � dielectric properties

• Mu � magnetic properties
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Using Lossy Materials

• With perforated panel air vents

• Under IC heatsinks

• Coating cables

• Resonant cavities
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Lossy Material Sandwiched 
Between Perforated Panles

Edge View

Perf panel

Absorber material
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Shielded Air Vent with 3 Different Lossy Materials 

with 3 Different Stackup Structures

5mm x 5mm openings
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1PEC + 1WTEFIG2PEC + 1WTEFIG3PEC + 2WTEFIG1PEC + 1WTBPJA2PEC + 1WTBPJA3PEC + 2WTBPJA1PEC + 1UD111542PEC + 1UD111543PEC + 2UD11154

1/(0.688ps x 2000) = 727MHz
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Heatsinks Can Increase Emissions
• Grounding heat sinks to PCB ground-

reference is commonly used to reduce 
heat sink emissions

– Can actually increase emissions if not enough 

contact points!

– Without continuous contact, improvement 

typically limited to < 3-5 GHz

• Lossy materials can make significant 
improvement at high frequency

– Reverb chamber used for all measurements
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Geometry

IC 

package

Heatsink

Powerplane1

Powerplane3

Ground2

Ground1

PCB 
stackup

Powerplane2

Lossy 
material 

surrounding 

IC package

Powerplane1

Powerplane3

Ground2

Ground1

PCB stackup

Powerplane2
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Test Fixture Example
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Lossy Material Cut into Square 

‘Donut’

500 mil

300 mil
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Measurement Techniques

• Semi-anechoic chamber

– Limited area where emissions are received

• Reverb Chamber

– Capture emissions regardless of direction of 

propagation

– Immune to test fixture size/length, position, 

configuration resonances
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Test Set up in Reverb Chamber

Vector Network Analyzer Receive antenna Tuner

Cu board used as reference 

plane for the heatsink

Heatsink above 

Cu board

( Could use signal generator 
and spectrum analyzer )

Vector Network Analyzer Receive antenna Tuner

Cu board used as reference 

plane for the heatsink

Heatsink above 

Cu board

( Could use signal generator 
and spectrum analyzer )
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Mode Stirrer
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Emissions Reduction from Heatsink

WT-BPJA Material
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Emissions Reduction from Heatsink

WT-EFIG Material
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Emissions Reduction from Heatsink

UD11554 Material
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UD11554 Material

• Reduce height under heat sink to ~ 1/2 
height

Lossy 
material 

surrounding 

IC package

Powerplane1

Powerplane3

Ground2

Ground1

PCB stackup

Powerplane2
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Reduction in Emissions with Added Lossy Material Under Heat Sink

UD-11554 Material
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Heatsink Summary

• All materials reduce emissions above 3-4 
GHz

• Wider material gives more loss

• Full height between heat sink and PCB 
give more loss than partial height
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Emissions from Cables

• Often the largest emissions source from a 
system

• Often unshielded cables
– High speed differential pairs (with common 

mode noise)

• Difficult to provide cost effective shielding 
at > GHz frequencies

• Lossy material examined to determine 
reduction in cable emissions
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Motivation
Eliminate Ferrite Cores on Cables
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 Reverb Chamber Test Configuration
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Ethernet Cable with and without 
Lossy Heat Shrink

Regular cable

Lossy material heat shrink
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Lossy Material Benefits

• Does not require a “water-tight” connection 
at connectors

– Shielding requires complete coverage

• Potential to be extruded onto cable during 
cable manufacturing

– Reduce cost
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Partial Coverage Tests

2” Sections spaced 1” apart

11” Coverage

37” Coverage

23” Coverage



10 Mar 2015 Bruce Archambeault, PhD 38

Partial Coverage Tests

• Determine the effect of which end driven

– End with lossy material

– End w/o lossy material

• Determine the effect of not-full coverage

– Cracks in material

• Catastrophic in traditional shielding
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Ethernet Cable Emission Reduction (When Drive Signal at Same End of Cable) 

ARC Lossy Material Covers Partial Length
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Ethernet Cable Emission Reduction (When Drive Signal at Opposite End of Cable) 

ARC Lossy Material Covers Partial Length
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Ethernet Cable Emission Reduction (When Drive Signal at Same End of Cable) 

ARC Lossy Material Covers Partial Length
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Cable Summary

• Cables coated with lossy material reduces 
emissions from cables

• Full coverage not required

– Effective at transmit end

• Compete (water tight) coverage not 
required

– Cracks in lossy material not a concern as for 

traditional shielding
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Reducing Resonance in Cavities

• Empty (or partially empty) enclosures 
allow standing wave resonant modes to be 
established

– If dimensions are right…hard to predict in 

complex enclosures

• Empty metal box allows us to measure 
effect of various materials
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Metal box photos
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Metal box high order modes computation 
(up to 2.5GHz)

b = 10 in

a = 12 in
d = 6 in

12 in 10 in 6 in TE(n,m,l) FREQ [GHz]

0.3048 0.254 0.1524 1 1 0 0.768725362

0.3048 0.254 0.1524 1 0 1 1.100427154

0.3048 0.254 0.1524 0 1 1 1.147825176

0.3048 0.254 0.1524 1 1 1 1.248875742

0.3048 0.254 0.1524 2 0 1 1.391942483

0.3048 0.254 0.1524 1 2 1 1.614293255

0.3048 0.254 0.1524 1 0 2 2.029087414

0.3048 0.254 0.1524 1 1 2 2.113278598

0.3048 0.254 0.1524 2 1 2 2.278708052

0.3048 0.254 0.1524 0 2 2 2.295650352

0.3048 0.254 0.1524 2 2 2 2.497751484



UD-175mil material on top-side
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Top -vs- Left side comparison
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UD material on Top & Left sides
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Effect of adding material around H-slot
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Effect of WT-BPIG material
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Effects with Reverb Measurement

• Previous tests show effect w/o reverb within the 
box
– Modes must be established before lossy material will 

have impact

• When reverb inside enclosure, then single port 
measurement allows Q-factor to be determined
– Eliminates requirement for slot in box to allow energy 

out!

• Following slides courtesy of ARC Technology
– David Green, “ONE-PORT TIME DOMAIN MEASUREMENT TECHNIQUE FOR 

QUALITY FACTOR ESTIMATION OF LOADED AND UNLOADED CAVITIES,” 
IEEE EMC Symposium, August 2013, Denver
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CENTER OF LID ABSORBER PLACEMENT – 

3.5 GHZ CENTER FREQUENCY 

Cavity Setup Measured Q (dB)

No Absorber 29.78

UD11554 23.56

UD11557 23.67

WX-A 26.45

EFIG 25.54

Higher slope 

means more 

absorption/loss!

Lower Q-factor more desirable for EMI Control
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CENTER OF LID ABSORBER PLACEMENT – 

10 GHZ CENTER FREQUENCY 

Cavity Setup Measured Q (dB) 3.5 
GHz

Measured Q (dB) 10 
GHz

No Absorber 29.78 34.62

UD11554 23.56 28.57

UD11557 23.67 29.03

WX-A 26.45 32.07

EFIG 25.54 29.33
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Summary

• Traditional approaches to EM shielding at high 
frequencies will not work in practical products 
without excessive cost, weight, etc.

• Using lossy/absorbing materials allows 
designers to reduce EMC issues (emissions and 
immunity) 

• Lossy/absorptive materials can be used
– Under heatsinks

– As coating to cables

– To break cavity based resonances
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Further Development Needed!

• Currently, it is difficult to predict effects of 
materials from simple material parameter 
analysis

• Full wave simulations with complex eps & 
mu are possible and on-going

• More work needed to allow relationship 
between complex eps & mu vs. frequency 
to help predict performance faster


