Fundamentals of Power Integrity with Current Design & Analysis Practices

Ihsan Erdin

SOCIETY_®

Power Noise on 3.3V Supply

Logic Noise Margins

Receiver Eye Diagram

Nov 2018

Analysis Parameters

$V_{noise}(s) = Z_{power}(s)I_{load}(s)$

Nov 2018

Planar Circuit Analysis

Target Impedance Mask

Vendor Provided Impedance Mask

Pin Groups and Representative Port

Practical Example

Ihsan Erdin, Ram Achar, "Multipin Optimization of Decoupling Capacitors on Practical Printed Circuit Boards," 2018 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Dec. 2018, Chandigarh, India

Self-resonance of decoupling

Spread Inductance

$$Z_{in}(s) = Z_{11}(s) - \frac{Z_{12}^2(s)}{Z_{22}(s) + Z_c(s)}$$

Ihsan Erdin, Ram Achar, "Pin-Capacitor Spacing As A Design Guide To Power Delivery Networks," 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), pp. 70-72, May 2017.

Impedance Increases with Spacing

Ihsan Erdin and Ram Achar, "Efficient Decoupling Capacitor Placement Based on Driving Point Impedance," *IEEE Trans. Microwave Theory and Tech.*, vol. 66, pp. 669-677, Feb. 2018.

Ihsan Erdin and Ram Achar, "Analysis of Decoupling Capacitors on Power Transmission Lines," 2018 *IEEE APEMC*, May 2018.

Calculate Required Total Capacitance

$$C_{total} = \frac{I_{load}(s)}{sV_{noise}(s)}$$

20-pin BGA footprint

A New Figure of Merit for Capacitor Placement

 $Q_i(s) = \frac{\left| \frac{Z_{ii}(s,r)}{Z_{ii}(s,r_0)} \right|}{Z_{ii}(s,r_0)}$

Nov 2018

177 power pins

Objective Function for Optimization

13 12.5 12.5 11.5 11.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.5 10

6 capacitors

	Optimized	Even
Q _{ave}	1.99	2.31
Q _{max}	2.61	2.62

Optimized placement

Even placement

Optimized placement

Even placement

8 capacitors

	Optimized	Even
Q _{ave}	1.75	2.11
Q _{max}	2.31	2.35

12 capacitors

	Optimized	Even
Q _{ave}	1.48	1.97
Q _{max}	2.23	2.30

Input Impedance of all pins

Pins with Lowest Input Impedance

177 power pins

Conclusions

•PI is an extension of SI in shared medium.

- •Noise implications increase with data rates.
- •Current design practices need to be revised for high data rate applications.
- •A new definition is proposed for effectiveness of decoupling capacitors.
- •Proposed algorithm considers power pins individually, aims to minimize spread inductance.
- •A new objective function is proposed for
- optimized placement.
- •Tested on industrial applications.

Appendix

Model of planar structure

 $Z_{ij} = \frac{s\mu d}{\beta 2\pi r_{i}} \frac{H_{0}^{(2)}(\beta | r_{i} - r_{j} |)J_{0}(\beta r_{j})}{H_{1}^{(2)}(\beta r_{i})}$

Distance at which the capacitor's effectiveness reduces by one qth of its maximum.

 $\left|\frac{Z_{in}(s,r)}{Z_{in}(s,r_0)}\right| \equiv q$

$$f(s,r) = Z_{in}(s,r) - \frac{q^2 |Z_{in}(s,r_m)|^2}{Z_{in}^*(s,r)}$$

$$r_{n+1} = r_n - \frac{f_n(s,r)}{f_n'(s,r)}$$

Nov 2018

Relations for Multi-pin and capacitor configuration

$$Z = \begin{bmatrix} Z_{n_p \times n_p} & Z_{n_p \times n_c} \\ Z_{n_c \times n_p} & Z_{n_c \times n_c} \end{bmatrix}$$

$$Z_{in} = Z_{pp} - Z_{pm} [Z_m + Z_c]^{-1} Z_{mp}$$

Worst-case Input Impedance with Additional Capacitors Outside BGA Pinfield

Ihsan Erdin and Ram Achar, "Multi-Pin Optimization Method for Placement of Decoupling Capacitors Using Genetic Algorithm," to appear in *IEEE Trans. Electromagnetic Compatibility*, in Dec. 2018.

