

The IEEE Magnetics Society is proud to present

2011 Distinguished Lecture series

Growth-control and microstructure characterization of magnetic thin films,

application to high density perpendicular magnetic recording media

Masaaki Futamoto

Chuo University, Tokyo

Contents

- **1. Introduction**
 - * Brief history of PMR research & development
- **2. Control and characterization of PMR media**
 - * Crystallographic and compositional microstructure
 - * Magnetization microstructure
- 3. Recent high-density PMR media
 - * Nano-structure, nano-magnetization structure
- 4. Future possibilities of PMR
- 5. Basic technology: Epitaxial film growth
 - * Control of crystal structure & orientation
- 6. Summary

Digital information in the world

Technology Developments

Structure of Recent Hard Disk Drive

(Perpendicular magnetic recording)

Hard Disk Drive (HDD)

Shift from LMR to PMR

Longitudinal Magnetic Recording (LMR)

Perpendicular Magnetic Recording (PMR)

R&D History of Perpendicular Recording Media

Cross-sectional Structure of CoCr-alloy Thin Film

CoCr-alloy film

Substrate

M. Futamoto et al., Japan. J. Appl. Phys., 24, L460(1985).

0 nm

Cross-sectional Structure of CoCr-alloy Thin Film

50 nm

Substrate

Underlayer for Controling Nucleation & Growth

Amorphous underlayer

Substrate

M. Futamoto et al., IEEE Trans. MAG-21, 1426(1985).

50 nm

2nd Underlayer for Controling Grain Diameter

1st underlayer (Ge)

IEEE MAGNETICS

Substrate M. Futamoto et al., J. de Phys., Coloq. C8, 1979(1988).

50 nm

Sample Preparation for Electron Holography

Y. Honda et al.,

J. de Phys., Coloq. C8, 1969(1988).

Effect of Film Orientation on Interference Micrograph of Leakage Magnetic Flux from Top and Rear Surfaces

Highly c-axis oriented (CoCr with Ge underlayer)

Poorly c-axis oriented (CoCr with no underlayer)

PMR Media Technology Development

Cr Segregation at Grain Boundaries and Magnetic Properties

Plan-view TEM and Elemental Distribution Maps of CoCrTa PMR Medium

Zero loss image

Cr ratio map

Co ratio map

Co-13at%Cr-3at%Ta PMR Medium

Ts=230 C

K. Kimoto, et al. J. Mag. Mag. Mater.159, 401(1996).

Structure of CoCrTa Perpendicular Media

Magnetization Structure of CoCrTa Medium

Magnetization Structure of CoCrPt+Oxides Medium

Scaling Down of Media Microstructure in 1/4 Century

Year :1985

Recording layer :CoCr h=300 nm, d=30-50 nm Hc=0.85 kOe

Recording layer :CoCrTa h=100 nm, d=15-20 nm Hc=2.2 kOe

Recording layer :CoCrPt+Oxides h=15 nm, d=7-9 nm Hc=4.2 kOe

C-axis Alignment perpendicular to the surface

Interface Structure between Co-alloy/Underlayer

Interface Structure between Co-alloy/Ru-Underlayer

Plan-view TEM of CoCrPt+Oxide Layer

Plan-view TEM of CoCrPt+Oxides Layer

Magnetic Crystal Isolation by Oxides Segregation

IEEE 🚸 MAGNETICS 😨

Local Composition Measurement by EDX-TEM

Crystal Grain Size Distribution

Composition Dependence on Crystal Grain Diameter

Estimation of Crystal Grain Boundary Composition

IEEE MAGNETICS 🚱 M. Fu

M. Futamoto et al., J. Phys: Conf. Ser., 200, 102001(2010).

Average Composition of Crystal Grain Boundaries

Co: 16.7 at% Cr: 16.3 Pt: 10.0 Si: 57.0

IEEE 🚸 MAGNETICS 🐼

Oxides SiO2, CoO, Cr2O3, etc.

Decreasing Trend of Recording Bit Size in HDDs

Relation between Bit Size and Crystal Grains

Relation between Bit Size and Crystal Grains

Relation between Bit Size and Crystal Grains 50 nm IEEE 🚸 MAGNETICS

Recording Density Possibility of PMR Media

K. Soneta et al., Intermag-2011 (April 28, Taipei), ES-03.

Stability of Recorded Bit Information (Thermal)

Recording Density Possibility of Current PMR Media

Recording Density Possibility of Future PMR Media

Recording Density Possibility of Future PMR Media Diameter & Position Control : Bit Patterned Media

🗖 Diameter: 30 nm 🛛 🔁 Pitch: 58 nm

K. Nagano et al., ICAUMS-2010, (Dec. 8, Jeju, Korea) IS-06, IR-14.

Recording Density Possibility of Future PMR Media Diameter & Position Control : Bit Patterned Media

Summary for PMR Media

- 1. Brief history of PMR research & development * Co-alloy media microstructure developments
- 2. Current PMR Media
 - * Nano-crystallographic, nano-compositional, and nano-magnetization structures
- **3. Future possibilities of PMR Media**
 - * Up to several Tb/in2 seems feasible
 - \rightarrow Various parameter control required
 - * Grain diameter
 - * Two-dimensional grain distribution
 - * Magnetization switching field distribution, etc.

Structure of Co/Pd multilayer magnetic dots

Pd(1 nm)/[Co(0.47 nm)/Pd(1 nm)]x9

Epitaxial Growth of hcp-Co film on underlayers

[Underlayers for hetero-epitaxial growth of Co, Co-alloy crystals]

Epitaxial Growth of Co Film on MgO Crystals

Growth of hcp-Co on MgO(100) Crystal Surface

Growth of hcp-Co on MgO(100) Crystal Surface

Y. Nukaga et al., J. Mag. Soc. Japan., 34, 508 (2010).

Growth of fcc-Co on MgO(110) Crystal Surface

Growth of fcc-Co on MgO(110) Crystal Surface

Co Film Growth on Different Planes of MgO Crystal

Plane Temp.	MgO(100)	MgO(110)	MgO(111)
100 °C	hcp-Co(1120): -4% + fcc-Co(100):-16%		fcc-Co(111) -16%
		fcc-Co(110)	
300 °C	hcp-Co(1120)	-16%	hcp-Co(0001)

Y. Nukaga et al., J. Mag. Soc. Japan., 34, 508 (2010).

bcc-Co Film Growth by Heteroepitaxy on GaAs(110)

M. Ohtake et al., Appl. Phys. Express, 4, 013006 (2010).

bcc-Co Film Growth by Heteroepitaxy on GaAs(110)

Intensity (arb. Unit)

bcc-Co Film Growth by Heteroepitaxy on GaAs(110)

Magnetic Property of bcc-Co Single-Crystal Film

M. Ohtake et al., Appl. Phys. Express, 4, 013006 (2010).

Binary Alloy Phase Diagrams: Fe, Co, Ni Systems

Thin Film Growth of Co-Ni, Ni-Fe, Fe-Co on MgO

>>MgO(100)

Temp.	Со	Co 80 Ni 20	Co 20 Ni 80	Ni	Ni80Fe20	Ni20Fe80	Fe	Fe65C035	Fe50Co50
100 °C							1 1 1	1 1 1	
300 ° C	hcp(11 2 0)	nc	p(1120)	+ TCC(1 -169	600)		bcc(10	0): -4%	
500 ° C	-4%		1 — — — — — — — — — – 1 1 1				г 	 	

>> MgO(110)

Temp.	Со	C080Ni20	Co 20 Ni 80	Ni	Ni80Fe20	Ni20Fe80	Fe	Fe65C035	Fe ₅₀ Co ₅₀
100 °C		1 		1 	1 1 1		1 		
300 ° C		fcc	(110): -	16%	r		bcc(21	1): –17%	
500 ° C		1	1 — — — — — — — — — — — — — — — — — — —	T — — — — — — — — — — — — — — — — — — —			Г — — — — — — — — — — — — — — — — — — —	 	

>> MgO(111)

Temp.	Со	Co 80 Ni 20	Co 20 Ni 80	Ni	Ni80Fe20	Ni20Fe80	Fe	Fe65Co35	Fe50Co50
100 °C		1 		1			1 1 1		
300 ° C	hcp(0001)	hcp(0001)	fcc	(111): -	16%		bcc(11	0): -22%	
500 ° C	-16%	fcc(111)				fcc(111) bcc(110)			

Thin Film Growth of Co, Ni, Fe on fcc Noble Metals

>> Au, Ag, Cu(100)

		Со			Ni			Fe	
Temp.	Au	Ag	Cu	Au	Ag	Cu	Au	Ag	Cu
100 °C	hcp(1120)	fcc(100)		hcp(1120)	fcc(100)				
300 °C	hcp(112 <mark>0</mark>) fcc(100)			hcp(1120) fcc(100)			bcc(100)		

>> Au, Ag, Cu(110)

		Со			Ni			Fe	
Temp.	Au	Ag	Cu	Au	Ag	Cu	Au	Ag	Cu
100 °C	hcp(1100)								
300 °C				10(110)				bcc(211)	

>> Au, Ag, Cu(111)

		Со			Ni			Fe	
Temp.	Au	Ag	Cu	Au	Ag	Cu	Au	Ag	Cu
100 °C	hcp(0001) fcc(111)		hcp(0001) fcc(111)		- ((
300 °C	hcp(0	001)		fcc(111)				ъсс(110)	

Structure Control of Co Films by Heteroepitaxy (I)

Summary

- **1. Epitaxial film growth is a very important technology in controlling the film nanostructure**
- 2. Proper selection of underlayer material and deposition condition will make it possible to control the crystal structure, orientation, strain, stress, etc. in magnetic thin films.
- 3. Magnetic thin films with meta-stable structures are one of the hopeful possibilities in the future development of magnetic devices

