

Pure Spin Currents: Discharging Spintronics

IEEE Magnetics Society Distinguished Lecture

Axel Hoffmann

Presented November 15, 2011 IEEE Santa Clara Valley Magnetics Society Materials Science Division Argonne National Laboratory hoffmann@anl.gov

- IEEE Magnetics Society Home Page: www.ieeemagnetics.org
 - 3500 full members
 - 300 student members
- The Society
 - Conference organization (INTERMAG, MMM, TMRC, etc.)
 - Student support for conferences and magnetism summer school
 - Large conference discounts for members
 - Local chapter activities
 - Distinguished lectures
 - Society awards
- IEEE Transactions on Magnetics
 - ~2000 peer reviewed pages each year
 - Electronic access to all IEEE Transactions on Magnetics papers
- Since 2010 IEEE Magnetics Letters; a rapid-publication, primarily electronic, peerreviewed journal dedicated exclusively to magnetics articles of substantial current interest. (See MagSoc Homepage)
- Online applications for IEEE membership: www.ieee.org/join
 - 360,000 members
 - IEEE student membership \$30
 - IEEE full membership \$150

IEEE MAGNETICS LETTERS

The Journal of Your Field

Peer reviewed
 Rapid publication
 IEEE Xplore archive
 Four-page articles
 No page charges

On line at ieeexplore.ieee.org Submit manuscripts at mc.manuscriptcentral.com/maglet-ieee

Spintronics

into Electronics

Nobel Prize

Novel Devices

New Physics

Recent Review: S. D. Bader and S. S. P. Parkin, Annu. Rev. Cond. Matter Phys. 1, 71 (2010)

Axel Hoffmann, MSD, Argonne National Laboratory

hoffmann@anl.gov

5

Tentative roadmap

Courtesy Claude Chappert, Université Paris Sud

Potential for Low Power Dissipation!

J. Shi, et al., Phys. Rev. Lett. 96, 076604 (2006).

Axel Hoffmann, MSD, Argonne National Laboratory

Can we generate pure spin currents in paramagnetic materials?

- Non-local geometries
- Spin-dependent scattering (Spin-Hall)

• Spin pumping

Axel Hoffmann, MSD, Argonne National Laboratory

Pure Spin Currents: Non-Local Spin Valves

Py/Ag Non-Local Spin Valve

Axel Hoffmann, MSD, Argonne National Laboratory

Δ

Origin of Enhanced ΔR_s

FIB sliced LSV

TEM of a non-aged sample

TEM of an aged sample

Thin layer of O-rich compound observed at Py-Ag interface in aged samples

Higher interface resistance

Better spin injection efficiency

G. Mihajlović et al., Appl. Phys. Lett. 97, 112502 (2010)

Axel Hoffmann, MSD, Argonne National Laboratory

hoffmann@anl.gov

Ag

30 nm

Temperature Dependence of Spin Signal

T-Dependence of Spin Relaxation Time

Quantitative analysis of spin flip probability: ϵ_s = 3.6% and ϵ_{ph} = 0.75% due to decreasing τ_s

G. Mihajlović et al., Phys. Rev. Lett. 104, 237202 (2010)

Axel Hoffmann, MSD, Argonne National Laboratory

Spin-Orbit Interaction

$$H_{SO} = \frac{\hbar}{4m^2c^2} \left(\vec{\nabla}V \times \vec{p}\right) \cdot \vec{\sigma}$$

Spin Relaxation (Elliot-Yafet)

Axel Hoffmann, MSD, Argonne National Laboratory

Alternative Approaches to Pure Spin Currents

Spin Hall Effect

Spin Pumping

Axel Hoffmann, MSD, Argonne National Laboratory

Spin-Skew Scattering

Axel Hoffmann, MSD, Argonne National Laboratory

Spin Hall vs. Inverse Spin HallM.I. Dyakonov & V. I. Perel, Sov. Phys. JETP Lett. 13, 467 (1971); J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)Spin HallInverse Spin Hall

Quantifying Spin Hall Angles in Metals

 $\gamma = \frac{\sigma_{SH}}{\sigma_c} \quad \stackrel{\text{spin Hall conductivity}}{\longleftarrow} \quad \text{charge conductivity}$

Electrical injection Magnetotransport measurements:

S. O. Valenzuela & M. Tinkham, *Nature* **442**, 176 (2006)

AI: $\gamma = 0.0001 - 0.0003$

T. Kimura et al., PRL **98**, 156601 (2007)

Pt: $\gamma = 0.0037$

T. Seki et al., Nature Mater. **7,** 125 (2008)

Au: $\gamma = 0.113$

Spin Torque modulated Ferromagnetic resonance:

K. Ando et al., PRL **101**, 036601 (2008)

Pt:
$$\gamma = 0.08$$

L. Liu et al., PRL **106**, 036601 (2011)

Pt: $\gamma = 0.076$

Large discrepancies in γ values ! Need robust technique to quantify spin Hall angle!

Axel Hoffmann, MSD, Argonne National Laboratory

Spin-mediated Charge Current Teleportation

J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

E. M. Hankiewicz et al., Phys. Rev. B 70, 241301(R) (2004)

M. I. Dyakonov, *Phys. Rev. Lett.* **99**, 126601 (2007)

D. A. Abanin et al., Phys. Rev. B 79, 035304 (2009)

Theoretical Idea: Use Spin Hall Effects Twice!

Gold Hall Bar Structures

Axel Hoffmann, MSD, Argonne National Laboratory

What do we do now?

Unusual Application of Spin Dynamics

As found in: Queen Victoria Pub, Durham, U. K.

Axel Hoffmann, MSD, Argonne National Laboratory

Excite ferromagnetic resonance

Axel Hoffmann, MSD, Argonne National Laboratory

Time dependent interfacial potential gives rise to spin accumulation in normal metal

Axel Hoffmann, MSD, Argonne National Laboratory

Axel Hoffmann, MSD, Argonne National Laboratory

Quantify Spin Current from Spin Pumping

Y. Tserkovnyak, A. Brataas and G.E.W. Bauer, Phys. Rev. Lett. 88, 117601 (2002)

$$\vec{j}_{spin}^{pump} = \frac{\hbar}{8\pi} \operatorname{Re}(2g_{\uparrow\downarrow}) \left(\vec{m} \times \frac{d\vec{m}}{dt}\right)$$
$$\vec{m} = \frac{\vec{M}}{M_s}$$
$$j_{s,dc} = \frac{\hbar}{4\pi} g_{\uparrow\downarrow} \omega \sin^2 \theta$$

DC part:

FMR linewidth determines spin mixing conductance

$$g_{\uparrow\downarrow} = \frac{4\pi\gamma_g M_s t_{Py}}{g\mu_B \omega} \left(\Delta H_{NM/Py} - \Delta H_{Py} \right)$$

Axel Hoffmann, MSD, Argonne National Laboratory

hoffmann@anl.gov

O. Mosendz *et al.*, Phys. Rev. B **79**, 224412 (2009)

Combine Spin Pumping and Inverse Spin Hall Effect

- Use Spin Pumping to Generate Pure Spin Current E. Saitoh, *et al.*, Appl. Phys. Lett. **88**, 182509 (2006)
- Quantify Spin Current from FMR
- Measured Voltage Directly Determines Spin Hall Conductivity O. Mosendz, *et al.*, Phys. Rev. Lett. **104**, 046601 (2010); Phys. Rev. B **82**, 214403 (2010)

Axel Hoffmann, MSD, Argonne National Laboratory

Measured Voltage - only Py

Single layer of Permalloy Antisymmetric signal

Measured Voltage - Spin Hall Effects

Bi-layers F/N Symmetric component in the signal $V_{SHE} = -\frac{\gamma}{\sigma} \frac{eL}{2\pi} E g_{\uparrow\downarrow} \frac{\lambda_s}{t_N} \omega \sin^2 \theta \sin \beta \tanh(t_N/2\lambda_s)$

High sensitivity to even small γ , as signal scales with dimension L

31

Determine Spin Hall Angle for Many Materials

O. Mosendz, et al., Phys. Rev. Lett. 104, 046601 (2010); Phys. Rev. B 82, 214403 (2010)

SOC

2 -

Energy (eV)

VS.

G. Y. Guo, *et al.*, Phys. Rev. Lett. **100**, 096401 (2008); J. Appl. Phys. **105**, 07C701 (2009)

Pd

 $σ_{SH} = 240 (Ωcm)^{-1}$

O. Mosendz, *et al.*, Phys. Rev. B **82**, 214403 (2010)

> Pd σ_{SH} = 256 (Ωcm)⁻¹

Spin Currents in Insulators

Use Direct Spin Hall Effect to excite magnetization dynamics

Use Inverse Spin Hall Effect and Spin Pumping for detection

Y. Kajiwara *et al.*, Nature **464**, 262 (2010)
C. W. Sandweg *et al.*, Appl. Phys. Lett. **97**, 252502 (2010)

Axel Hoffmann, MSD, Argonne National Laboratory

Spin Torque from Spin Hall

Threshold for Spin Transfer Torque?

Non-linear dependence on current

Z. Wang et al., Appl. Phys. Lett. 99, 162511 (2011)

Spin Mediated Energy Conversions

Spin Seebeck 🗇 Spin Peltier

Thanks to

Goran Mihajlović and Oleksandr Mosendz

Hitachi Global Storage Technologies

Helmut Schultheiß, Vincent Vlaminck, John E. Pearson, Frank Y. Fradin, Sam D. Bader, Dan Schreiber, Yuzi Liu, and Amanda Petford-Long Argonne National Laboratory

Miguel A. Garcia

Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas

Gerrit E. W. Bauer

Delft University of Technology and Tohoku University

Toru Hirahara

University of Tokyo

Zihui Wang, Yiyan Sun, Young-Yeal Song, and Mingzhong Wu

Colorado State University

Financial Support \$\$\$ DOE-BES

Conclusions

- Spin Currents behave different compared to Charge Currents
 - Possibility of Reduced Power Dissipation
- Non-Local Electrical Injection
 - Generate Pure Spin Currents
 - Study Spin Relaxation
- Spin Hall Effects
 - Generate and Detect Spin Currents w/o Ferromagnets
- Spin Pumping
 - Generate Spin Currents w/o Electric Charge Currents
- New Opportunities for Spin Mediated Effects

Axel Hoffmann, MSD, Argonne National Laboratory

hoffmann@anl.gov

39