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Inhomogeneously magnetized systems 

Domain wall 

Race-track memory 

Skyrmion 

Skyrmion race-track 

Low power consumption, High density memory 



My motivation 

What is this curve? 

Nucleation of reversed domain  

Domain wall motion 

Magnetization process is so complicated to understand for me… 

I want to see 
Nucleation of a single domain & motion of a single DW !  
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NiFe(20nm)/Cu(10nm)/NiFe(5nm) 

0.5 µm in width, 20 µm in length 
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Appl. Phys. Lett. 72 (1998) 1116. 

Domain wall is pinned by artificial neck. 
Single DW nucleation & motion! 

SEM image 
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Observation of nucleation & motion of single domain wall  
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Resistance linearly decreases with time. 
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--- Sample --- 

Ni81Fe19(40nm)/Cu(20nm)/ Ni81Fe19(5nm) 

0.5 µm in width, 2 mm in length 

Science  284 (1999) 468. 

Real-time observation of single DW motion  

DW runs faster than Shinkansen! 
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Science  284 (1999) 468. 

Interaction between DW & current ? 

DW motion can be detected by resistance measurement. 

Can we manipulate DW motion by electric current? 
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Prediction of current-induced domain wall motion 

Change in spin direction of 
conduction electron 

Rotation of 

local magnetic moment  

Static domain wall 

Domain wall 

Current 

Conservation of  
     spin angular momentum 
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Adiabatic spin transfer torque 

DW motion along electron flow 
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Successive MFM images of DW motion by current injection 
(7×1011 A/m2, 0.5 µs) 

DW position can be controlled by current pulsed. 

Phys. Rev. Lett., 92 (2004) 077205. 
NiFe, w = 240nm, t = 10nm 
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Field-driven v.s. Current-driven DW motion 

Magnetic field-driven DW motion 

DWs annihilate each other…. 

Electric current-driven DW motion 

DWs are moving together to the same direction. 

We can shift the information (DW)! 
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Magnetic Racetrack Memory proposed by IBM 

A novel three-dimensional 
spintronic storage memory  

Magnetic nanowires:  

 Information stored in the domain 

-Capacity of a hard disk drive 

-Reliability and performance of solid state memory  

(DRAM, FLASH, SRAM...) 

Courtesy of Stuart Parkin (IBM) 
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CIDW-MRAM proposed by NEC 

Low 
resistance 

High 
resistance 

Reading: TMR effect 

Fast operation 

Independent circuits for reading and writing 

Replace SRAM 

Tunneling barrier 

S. Fukami et al., 52nd Conference on MMM Abstracts FE-06 (2007). 

reading 

writing 

Writing: Current-induced DW motion 
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Requirements for practical applications 

 (1) High thermal stability  > 60 kBT 

 (2) Low threshold current  < 1011 A/m2 

 (3) High DW velocity > 100 m/s 

 Elucidation of mechanism 

 Exploration of new material 
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Bloch DW 

Energy 

< 

To drive a DW by current, 

spin torque has to overcome the barrier of Neel wall! 

DWM by adiabatic spin torque 

&Intrinsic pinning for DW motion 
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Tatara and Kohno, Phys. Rev. Lett. (2004). 

Neel DW 

+ - 

 DW moves with precessional motion. 

 Direction of DW motion is along electron flow. 

 Jth is given by 
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Bloch DW Neel DW 
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How to prove the intrinsic pinning? 

For current-driven DW motion by adiabatic torque, 
Spin torque has to overcome the barrier of Neel wall! 

Spin torque has to overcome the barrier of Bloch wall! 

Resulting in Jth minimum 

 
By changing wire width, 

(1) Existence of minimum of Jth for DW motion 

(2) Change of DW structure from Bloch to Neel 
 



CIDWM in symmetric nanowires 

FM 

NM 1 

NM 1 

DW 

 Eliminate the effect of current-induced magnetic field 

 Cancel the interfacial effect (Rashba, DMI, spin Hall etc.) 

Ideal system to investigate DW motion by 

Bulk adiabatic spin transfer torque 
Nature Materials 10 (2011) 194. 

Nature Nanotechnology 7 (2012) 635. 

Nature Communications 4 (2013) 2011. 

Si/Ta(3)/Pt(1.6)[Co(0.2)/Ni(0.6)]4Co(0.2)/Pt(1.6)/Ta(3nm) 
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Hall probe 

DW 

17 

Au/Ti 

electrode 

Co/Ni wire 

 hall probe 

L w 

Device & DW motion detection method 

Si/Ta(3)/Pt(1.6)[Co(0.2)/Ni(0.6)]4Co(0.2)/Pt(1.6)/Ta(3nm) 
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Hall probe 

DW 
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Neel Wall 

Neel Wall + Bloch Wall  

Bloch Wall 

Bloch Wall 

Bloch Wall 

Evidence for intrinsic pinning! 

Jth & DW resistance v.s. wire width 

Bloch DW 
Neel DW 

Nature Materials 10 (2011) 194. 

・Jth minimum 

・Change of DW structure 
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No correlation between Jth & depinning field. 

Jth & Hdep  v.s. wire width 

Nature materials 10 (2011) 194. 

Compatibility of low power operation & high stability !  



20 

T. Koyama, et al., Appl. Phys. Lett. 98, 192509 (2011). T. Koyama,  et al., Nat. Mater. 10, 194 (2011). 

In the case of DW motion by adiabatic torque, 

Jth & DW velocity are insensitive to H 

Jth v.s. H velocity v.s. H 

Good for application! 
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Thermal stability of DW 



300 repeated measurements 
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Determination of the barrier by magnetic field 
Thermally activated DW depinning  

Depinning # for each time span 

Depinning probability as a function of time 

 as a function of H 

mag=392±13 kBT 

Single exponential 

Single barrier 

Nature Communication 4 (2013) 2011. 
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300 repeated measurements 
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Determination of the barrier by current 
Thermally activated DW depinning  

Depinning # for each time span 

Depinning probability as a function of time 

 as a function of I 

curr=60±3 kBT 

Single exponential 

Single barrier 

mag=392±13 kBT 

curr=60±3 kBT 
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Two barriers and device properties 

Thermal stability 
Defined without the d.c. current Defined with the d.c. current 

Thermal stability of position is 
governed by extrinsic pinning 

Threshold current is domintated 
by intrinsic pinning 

d.c. current induces 
the tilting along φ axis 

Thermal energy larger than intrinsic  
barrier induces not the position change 
of DW but the random precession of f. 

Threshold current 

Intrinsic energy barrier can induce the 
position change of DW due to the 
tilting of energy slope. 

Two barrier stability allows us the low threshold current with high thermal stability. 



25 

Recent progress on DW motion 

DW motion induced by spin Hall torque 
& 

Dzyaloshinskii-Moriya Interaction  



New mechanism for DW motion 

-Spin Hall torque on Neel DW- 

SH


SH


J J 

spin Hall torque on Neel wall! 

 DW motion… 



Heff 
Heff 

Heff 
Heff 

Thiaville et al., Europhys. Lett.  

100, 57002 (2012). 

Chiral Neel wall stabilized DMI wall is necessary! 

How to confirm? → Experiments under HL! 



Chiral Neel wall + spin Hall torque 

DW velocity under in-plane field 
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Field-induced chirality change of DW results in change of DWM direction. 

 J = 1.4×1012 A/m2 

Appl. Phys. Express 7 (2014) 053006. 

HDMI 

Ta(3nm)/Pt(2nm)/MgO(1nm)/Co(0.3nm)/Ni(0.6nm)/Co(0.3nm)/Pt(2nm)/Ta(3nm)/Si sub.  

Emori et al., Nat. Mater. (2013), Ryu et al., Nat. Nanotech. (2013) 



29 Very good news, but… 



Appl. Phys. Express 7 (2014) 053003. 

Jc is proportional to Hp. 

Jc v.s. Hp for spin Hall torque DW motion 
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Ta(4nm)/Pt(2nm)/MgO(1nm)/Co(0.3nm)/Ni(0.6nm)/Co(0.3nm)/Pt(2nm)/Ta(4nm)/Si substrate 

High thermal stability leads to high Jc.  



   Summary 
   

Spin dynamics in inhomogeneously magnetized systems 
 

      (1) Magnetic domain wall 

         (1-1) DW motion by adiabatic spin transfer torque 

 ・Existence of intrinsic pinning  

 ・DW motion is insensitive to external field and defects. 

         (1-2) DW motion by spin Hall torque 

 ・Need for chiral DW induced by DMI. 

 ・DW motion is sensitive to external field and defects. 

         (1-3) Correlation between DMI and orbital moment. 
 

      (2) Magnetic vortex 

         (2-1) Current-induced dynamics magnetic vortex core 

 ・Current-induced vortex core switching 

 ・Vortex core memory 

         (2-2) Spin motive force due to a gyrating magnetic vortex 
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