Nanomaterials: Naughty or Nice?

Fionna S. Mowat, Ph.D

Institute of Electrical and Electronic Engineers (IEEE), Santa Clara Valley Chapter (SCV)
Product Safety Engineering Society (PSES)
October 28, 2008
Science or Science Fiction?

“Nanoparticles are small enough to get places nobody’s ever had to worry about before.”

(Michael Chrichton, *Prey*)
LETTERS

Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study

CRAIG A. POLAND1, RODGER DUFFIN1, IAN KINLOCH2, ANDREW MAYNARD3, WILLIAM A. H. WALLACE1, ANTHONY SEATON4, VICKI STONE5, SIMON BROWN1, WILLIAM MACNEE1 AND KEN DONALDSON1*
1HIEC, University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
2School of Materials, University of Manchester, Grusswolde Street, Manchester M1 7HS, UK
3Weidner Wilson International Center for Scholars, 1300 Pennsylvania Avenue, NW, Washington DC 20004-3607, USA
4Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4YP, UK
5School of Life Sciences, Napier University, Colinton Road, Edinburgh EH10 5DT, UK
*e-mail: ken.donaldson@ed.ac.uk

Published online: 20 May 2008; doi:10.1038/erna.2008.111

Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study

CRAIG A. POLAND1, RODGER DUFFIN1, IAN KINLOCH2, ANDREW MAYNARD3, WILLIAM A. H. WALLACE1, ANTHONY SEATON4, VICKI STONE5, SIMON BROWN1, WILLIAM MACNEE1 AND KEN DONALDSON1*

graphene cylinders, typically a few nanometers in diameter, which can range in length from a few micrometres to millimetres. Single-walled nanotubes (SWNTs) consist of one such cylinder, and multi-walled nanotubes (MWNTs), as used in this study, comprise 2 to 50 such cylinders concentrically stacked with a common long axis. This structure gives nanotubes an unusual
Agenda

• Brief “nano 101”
• Environmental health & safety (EHS) issues
 – Risk assessment of nanomaterials
 • Exposure
 • Toxicity
• Conclusions and recommendations
Nanomaterials 101

- Substances <100 nm in size
 - Dust mite (~200,000 nm)
 - Human hair (~80,000 nm)
 - Red blood cells (~5,000 nm)

- Novel materials created by engineering on the atomic level

- Unique properties based on quantum physics and large surface area
The Term “Nanomaterials” is Meaningless!

[photo removed due to copyright / permissions]

What are Nano-Engineered Materials?

<table>
<thead>
<tr>
<th>ENGINEERED</th>
<th>INCIDENTAL</th>
<th>NATURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Carbon-based (nanotubes, fullerenes)</td>
<td>• Particles from:</td>
<td>• Particles from:</td>
</tr>
<tr>
<td>• Metal oxides</td>
<td>• Combustion</td>
<td>• Plants, trees, forest fires</td>
</tr>
<tr>
<td>• Quantum dots</td>
<td>• Industrial processes, grinding, welding</td>
<td>• Oceans, bodies of water</td>
</tr>
<tr>
<td>• Nanowires</td>
<td>• Vehicles (e.g., diesel)</td>
<td>• Erosion, dust</td>
</tr>
<tr>
<td>• Dendrimers</td>
<td>• Construction</td>
<td>• Volcanic eruptions</td>
</tr>
<tr>
<td>• Composites</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[photo removed due to copyright / permissions]

Adapted from Savage and Walker (2006).
Growth of Nanotechnology in Consumer Products

Source: Woodrow Wilson International Center for Scholars; www.nanotechproject.org
Applications of Nanomaterials

- Vehicles
- Aerospace
- Structures
 - Buildings
 - Bridges
 - Elevator to space
- Personal care items
- Medical devices

- Chemicals
 - Fuel additives
 - Lubricants
 - Catalysts
- Power generation
- Electronics
- Clothing
- Remediation
Questions...

• Occupational & consumer health
 – Will this be the next asbestos?

• Environmental health
 – Will this be the next PCB, DDT, or [insert favorite chemical here]?

• Manufacturing & marketing
 – Will this be the next genetically modified foods (GMO)?
Survey of Current Work Practices and EHS Programs

- Results of survey of 64 companies who use or research nanomaterials
- Telephone questionnaire on EHS issues
- All information self-reported (no verification)
Findings of ICON Report

• Actual EHS practices did not differ from conventional safety practices
 – Engineering controls, PPE, clean-up methods, waste management
 – Practices often based on properties of bulk material or solvent carrier
 – North America appeared to lead the way regarding implementation of EHS programs

• Few organizations reported workplace monitoring or provided formal guidance

• Most organizations recommended disposing of nanomaterials as hazardous waste

• Most reported that biggest impediment was lack of information on hazards
Regulations and Quality Controls

Depending on the industry, common regulations and qualification testing specifications are expected to include:

- Environmental Protection Agency
- International Standard Organization
- American Society for Testing and Materials
- Institute of Environmental Science and Technology
- Underwriters Laboratories

These specifications allow for a model for reporting and suggested experimental techniques. The techniques and protocol development is ongoing.
EHS Research Areas of Federal Agencies

Source: Adapted from Geraci (2006). AIHce.
The Challenge:

• Are existing regulatory frameworks and guidance sufficient for nano-engineered materials?

• Do new regulations/frameworks need to be devised and implemented?

• In either case, what is the underlying data upon which to base policy?

See also review by Davies (2005).
EHS: Release and Exposure

Source: Adapted from Tsuji et al. (2006).
Much Is Already Known

• Nano-sized particles have been in production for decades
 – Carbon black for manufacture of rubber products and pigments
 – Titanium, aluminum, zirconium, and fumed silica as thixotropic agents in pigments and cosmetics
 – Products used in the semiconductor and micro-electronics industry
 – “Micronized” titania in sunscreens
Much Is Already Known continued

- Epidemiologic studies of certain workers exposed to both macro- and nano-scale substances show effects only at very high levels
 - Metal fume fever in welders of zinc
 - Foundry workers exposed to aluminum

- On the other hand, studies of atmospheric UFPs (PM$_{10}$, PM$_{2.5}$, PM$_{0.1}$) linked to short-term increases in morbidity and mortality
Key Exposure Issues for Human Health and the Environment

• **Degree of containment or encapsulation**
 - Presence of coatings?
 - Matrix properties?
 - Product integrity during wear and weathering?

• **Environmental fate and transport**
 - Increased solubility and mobility?
 - Aggregation/precipitation potential?
 - Propensity for bioaccumulation?
 - Effect of surface coatings and treatments?

• **What are the relevant exposure measures and available technology?**

• **What is the effectiveness of current approaches for occupational and consumer protection?**
Manufacturing, Synthesis, and Production Process

QUALITY CONTROL

Raw Materials → Manufacturing Process → Final Product → Production

Worker Exposure

Unused Material
- Byproducts, product disposal after use

Public or Environmental Exposure

Waste Streams
- Waste during processing
Potential Exposures During Manufacturing, Synthesis, and Production

- **Synthesis process/particle formation**
 - Gas phase (air)
 - Vapor phase (surface)
 - Colloidal (liquid suspension)
 - Attrition (liquid suspension)

- **Sources (examples)**
 - Reactor leakage
 - Product recovery
 - Spray drying
 - Spillage, drying

Potential pathways for inhalation or dermal exposure:

- Airborne contamination (inhalation)
- Handling of raw materials (dermal)
- Cleaning/maintenance (inhalation)
- Spillage (inhalation, dermal)
No Agreed Upon Method for Measuring Airborne Exposures

- Conventional methods may not be practical
- Several approaches:
 - Adopt current mass-based approaches
 - Measure size distribution
 - Monitor number concentration
 - Monitor aerosol surface area concentrations
- For nano-engineered materials, surface area and shape become relevant metrics as well
What are Current Exposure Measurement Options?

- Condensation particle counter (CPC)
- Differential mobility analyzer (DMA)
- Electrical low pressure impact (ELPI)
- Aerosol surface area measurement
AEROTRAK™ 9000: Nanoparticle Aerosol Monitoring

- Portable, battery operated
- Real-time surface area measurement and read-out
- Can display 8-hour TWAs and statistical summaries of surface area data
- Alarm set-point can be set for use in workplace monitoring
- Can be used to log exposures for record-keeping purposes

TSI Model 3550 Nanoparticle Surface Area Monitor

• Matches lung deposition of particles
• Measures surface area of fraction of particles that deposit in tracheobronchial or alveolar regions of human respiratory tract
• 10 nm to 1000 nm range capability
Possible EHS Strategies for Exposure Control in Manufacturing and Production

- Devise and implement SOPs with safety in mind
- Particle monitoring methods to identify leaks in reactors and other possible emissions
- Design processes that limit worker exposure
 - Total enclosure of the process
 - Partial enclosure with local exhaust ventilation/filtration
 - Mix nano-engineered materials in liquid slurries
 - Use proper personal protective equipment
 - Control ventilation (e.g., air exchanges per hour)
 - HEPA filtration on all tooling exhausts, re-circulated air
 - HEPA vacuums for cleaning spills
 - Cleaning methods for walls and surfaces
- Monitor during exposure periods and/or limit time per shift
- Conduct materials science evaluation to allow for evaluation and eventual incorporation of “safer” properties into product design
- Control banding
Potential Control-Banding Approach (Conceptual Model)

Exposure Index

<table>
<thead>
<tr>
<th>Impact Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Specialist advice**
- **Containment**
- **Engineering control**
- **General ventilation**

Exposure Index = “Dustiness” or propensity to become airborne, amount used

Impact Index = Bulk hazard, surface area, surface activity, shape, size

Source: Maynard (2006)
Materials Science: Factors Affecting Exposure Potential

- **Performance**
 - Durable
 - Encapsulated
 - Stable

- **Process**
 - Mixing
 - Heating
 - Application

- **Properties**
 - Toughness
 - Adhesion
 - Friability
 - Environmental resistance
 - Diffusion rates

- **Structure**
 - Polarity
 - Crystallinity
 - Reactivity
Materials Science and Exposure Potential

- **Particle behavior**
 - Dispersion/agglomeration/aggregation

- **Durability of coatings/product integrity**
 - Chemistry and microstructure determine behavior over time, e.g., weathering, friability, wear, leaching

- **Binder effect**
 - Affinity of binders and particles
 - Resistance to chemical dissolution
 - Encapsulation

Source: http://fcs.itc.it
Source: http://ipt.arc.nasa.gov/cntpolymer.html
Engineer Safety into Products

• Use knowledge of factors that determine nanoparticle toxicity to reduce reactivity, dispersion, etc.
 – Less toxic particles with greater wealth of toxicity information
 – Surface coatings
 – Encapsulate or embed in matrix which prevents release of free nanoparticles
Toxicology of Nano-Engineered Particles: A Matter of Size?

• **Ability to cross biological barriers**
 - Cell membrane
 - GI tract
 - Skin
 - Blood-brain
 - Deeper airways
 - Lungs-blood
 - Placenta

• **Higher reactivity**
 - Large relative surface area
 - Surface charge, photocatalytic activity
 - Increased oxidative stress and injury
Effect of Size on Toxicity

Dogma:
- Toxicity is a function of particle surface reactivity
- Smaller particles have much larger surface area per mass
- Therefore, the smaller the particle, the greater the toxicity per mass

100 g Iron:
- Diameter = 2.9 cm
- Surface Area = 26.1 cm²

100 g Iron:
- Diameter = 50 nm
- Surface Area = 1,520 m²
Some Evidence That Smaller Size Increases Toxicity

• Lung inflammation studies
 – TiO$_2$: 21 nm v. 300 nm inhaled by rats
 • Basis of NIOSH’s lower worker exposure limits for ultrafine v. fine scale particles
 – TiO$_2$: 20 nm v. 250 nm instilled in rats and mice
 – UFP instilled in mice

• However, TiO$_2$ inhalation studies used different crystal types—a more toxic type for the 21 nm particles
Smaller Size Does Not Necessarily Confer Greater Toxicity

- Nano anatase TiO$_2$ rods and dots were not more toxic than rutile fine-scale TiO$_2$ particles when instilled in rat lungs
- Smaller TiO$_2$ particles were not more cytotoxic in vitro
- Toxicity of quartz particles was more dependent on surface characteristics than particle size

http://www.cdc.gov/niosh/review/public/tio2/
Size is Not Everything

• Shape, surface properties, crystal type
 – Toxicity of TiO$_2$ anatase \gg TiO$_2$ rutile

• Chemistry
 – Lung inflammation: (UFP, CNTs, quartz) $>$ TiO$_2$ $>$ MgO
 – *In vitro* solubility and cytotoxicity:
 Fe$_2$O$_3$ = asbestos $>$ ZnO $>$ TiO$_2$ = CeO$_2$ = ZrO$_2$
 but….
 – Soluble essential metals may be easily handled in the body once absorbed
“Lessons Learned”

• **Asbestos**
 – Dimension, chemical composition, biopersistence, and durability play a role in disease
 – Respiratory uptake and deposition patterns may be similar

• **Welding fume**
 – Respiratory uptake and deposition patterns may be similar
 – Translocation via neuronal transport?

• **Ultrafine particles**
 – Wealth of information on pulmonary toxicity
 – Translocation to other organs may play a role
 – Cytokine release and other mechanisms may be involved in cardiovascular outcomes
Conclusions and Recommendations
State of the Knowledge for NMs

• What we know we know
 – Health effects of UFPs, air pollution, fibers
 – Control technologies for ultrafines
 – Some important factors affecting toxicity and chemistry
 – Short-term, high dose toxicity of some nanomaterials

• What we’re still figuring out
 – Relevant measurement and characterization techniques
 – Hazards of novel engineered particles
 – Extent of translocation in the body and fate/transport in the environment for novel materials
 – Health risks in workers and their families from chronic exposures to novel materials
 – Effectiveness of controls

Source: Adapted from Schulte and Salamanca-Buentello (2006)
The Good News...

- Substantial awareness of the issue
- Processes are “similar” to other chemical production processes
- Valuable materials – not thrown around
- Likely to be difficult to become airborne
- Current PPE likely adequate (NIOSH)
- Airborne materials may quickly agglomerate or disperse (also those in solution)
- Filtration probably effective for airborne nano-engineered particles
- Many applications have little potential for release of particles

Source: Adapted from Aitken (2006).
But We Should Act Now!

- **Manufacture/synthesis**
 - Work in well ventilated area
 - Mix product within enclosed vessels or in liquid slurry
 - Encapsulate nanoparticles to prevent release
 - Evaluate “best practices,” SOPs, labeling requirements, registrations—document and implement
 - Educate workers and incorporate into decisions

- **Use/misuse**
 - Evaluate exposure of new product, as well as older product (potentially worn or degraded)
 - Use “lessons learned” from other materials, when applicable
 - Materials science analysis for exposure potential

- **Be suitably cautious and be proactive!**
Recommendations

- Evaluate the potential for exposure throughout the particles life cycle
- Conduct materials science analysis of product matrix
- Evaluate factors that determine toxicity (e.g., chemical composition, aggregation potential, etc.)
- Performance-based testing
 - Many regulatory limits (e.g., water discharge limits) are performance-based (e.g., aquatic toxicity testing)
- Design tests to distinguish if products containing nano-engineered materials are different to those without these materials.