

Exploiting Real World Channels for Increased Capacity

IEEE Santa Clara Valley Signal Processing Society

8 December 2008

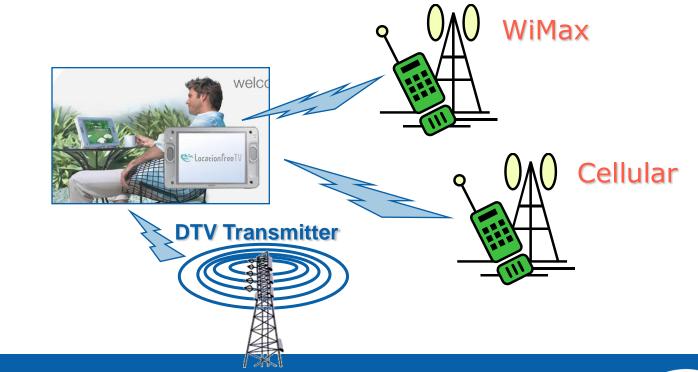
Ernest Tsui and Xiaoshu Qian

Contributors: Ed Casas and Anand Konanur

Copyright © 2008, Intel Corporation. All rights reserved

Agenda

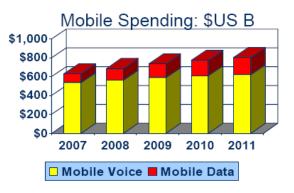
- Introduction
 - Usage models
 - Ecosystem Changes
- Communications Model/Environment
- Channel Model Backgrounder
- Directional Channel Model Example
- Performance and Design Guidelines
- Summary and Conclusions

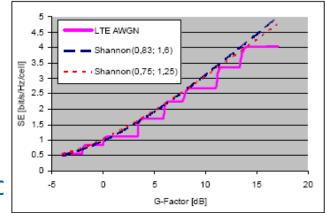


Usage Models

Consumers are increasingly Mobile and Nomadic

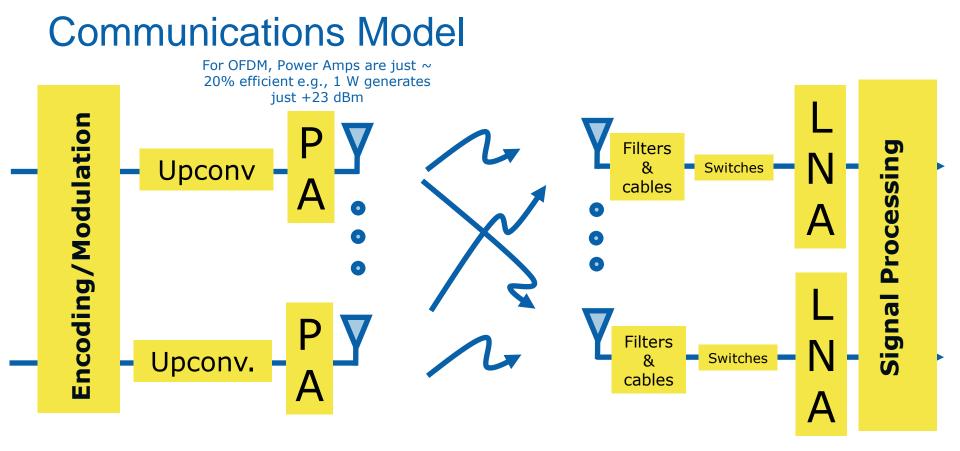
Mobile and Nomadic Enabled by longer life Mobile PCs and Great displays





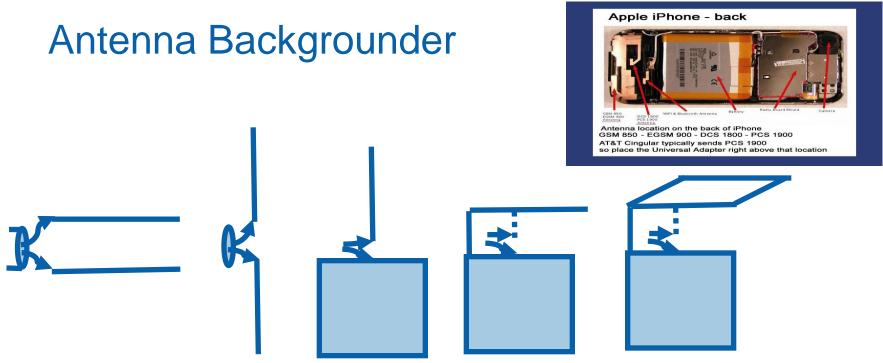
Ecosystem Changes

- World-wide Cellular Data Growth
 - Subscriptions for voice are saturating (yellow)
 - ARPU (ave. revenue per user) growth (red) from data (~ 17%-IDC)
- Achieving Shannon Bound nearly achieved
- New Spectrum is limited at 700-800 MHz
- Old infrastructure is barely adequate new infrastructure (towers) cost is huge
- Need to Increase the efficiency of data transmission (Increase Green Content) avoic wasting power/time



IDC

P. Mogensen et. al., "LTE Capacity compared to the Shannon Bound" IEEE Conf on Veh. Tech. April 2007

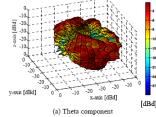


• TX Power Amplifiers (PA) are burdened by high peak to average ratios of OFDM signals – limited by power dissipation

• RX filters and cable insertion losses limit the noise figure of the system – not much improvement can be obtained – LNAs are close to ideal (w/o "cooling")

 That leaves only the antennas & signal processing and their configuration and the channel to exploit

- Capacitor Model, Dipole, Monopole, Inverted F, Broadband PiFA
- Near field (spherical waves) Far Field (Plane Waves)

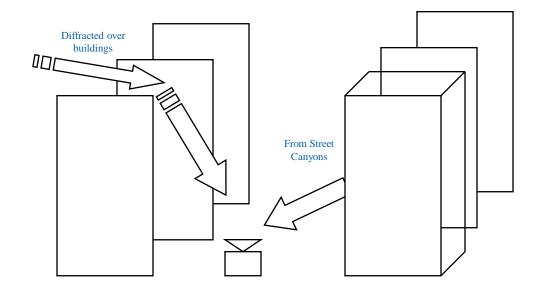

 power in, cable & matching losses, efficiency (ohmic losses), and pattern Gain (over isotropic) gives the power out in a given direc

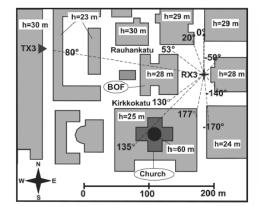
A. Yamamoto et. al., "Outdoor Urban Propagation

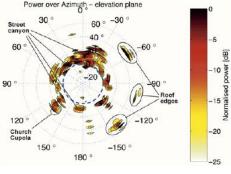
Experiment of a Handset MIMO antenna with a Human

Phantom located in a Browsing Stance" IEEE, 2007

Antenna Enclosure and Body, Head, hand-hold positio

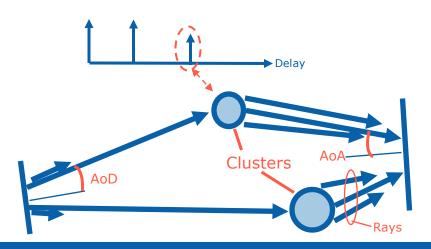





Real World Transmission Paths for Macro-cells

• Signals come to the mobile station primarily from two mechanisms:

- from street canyons and,
- over the tops of buildings via diffraction (weaker) and reflection (stronger)
- Diffraction around corners and rooftops can result in key-hole effects
 - Produce more severe fading (double Rayleigh)
 - Reduces no. of independent MIMO channels


K. Kalliola et. al., "3-D Double-Directional Radio Channel Characterization for Urban Macrocellular Applications", IEEE Trans. On Anten. & Prop. Nov. 2003 • Channel Models developed to characterize directional aspects of propagation

• Important to accurately characterize in order to correctly predict MIMO and Diversity gains

Channel Model Backgrounder

- Classic: Impulse response model
 - But where do the signals actually come from???
- Measurement Data for Azimuth and Elevation
 - 3GPP (LTE) and 802.16m use WINNER II directional channel models
 - Based on extensive measurement campaign (indoor, rural, suburban, urban, and relay)
 - Generally AZ used only but EL should also be incorporated in modeling
- Double Directional Channel Model
 - Clusters represent groups of similar delays and
 - Angles of Departure and Angles of Arrival can differ due to Base-station (high above bldgs) vs. Mobile Station surrounding environments (reflectors farther and closer, respectively)

• AZ delay power spectrum

ELEV
 delay power
 spectrum
 ELEV \

power spectrum

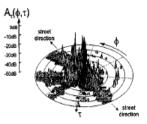


Fig. 23. Averaged ADPS, $A_\tau(\phi,\tau),$ of the incoming waves. We averaged over all scenarios in the environment class Street_Corner.

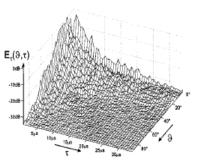


Fig. 24. Averaged EDPS $E_{\tau}(\vartheta, \tau)$ of the incoming waves. We averaged over all scenarios in street environments, including the environment classes Street_Classic, Street_Far Echoes and Street_Corner.

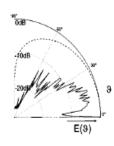


Fig. 25. Averaged EPS, $E(\vartheta)$, of the incoming waves (solid line). We averaged over all scenarios in street environments, including the environment classes Street_Classic, Street_Far Echoes, and Street_Corner. The dashed line represents the vertical antenna pattern of a $\lambda/4$ monopole mounted on a infinite conducting plane.

A. Kuchar et. al. "Directional Macro-Cell Channel Characterization from Urban Measurements" IEEE Trans Ant. & Prop. Feb. 2000.

Typical Urban Macro-cell Example Channel Model

Table 6-12 Scenario C2: NLOS Clustered delay line model.

Cluster #	Delay [ns]			Power [dB]			AoD [°]	AoA [°]	Ray power [dB]			
1	0			-6.4			11	61	-19.5			
2	60			-3.4			-8	44	-16.4			
3	75			-2.0			-6	-34	-15.0			
4	145	150	155	-3.0	-5.2	-7.0	0	0	-13.0			
5	150			-1.9			6	33	-14.9			
6	190			-3.4			8	-44	-16.4			
7	220	225	230	-3.4	-5.6	-7.4	-12	-67	-13.4		50	
8	335			-4.6			-9	52	-17.7	Cluster ASD = 2°	Cluster ASA = 15	7 dB
9	370			-7.8			-12	-67	-20.8			
10	430			-7.8			-12	-67	-20.8			1
11	510			-9.3			13	-73	-22.3			XPR
12	685			-12.0			15	-83	-25.0			X
13	725			-8.5			-12	-70	-21.5			
14	735			-13.2			-15	87	-26.2			
15	800			-11.2			-14	80	-24.2			
16	960			-20.8			19	109	-33.8			
17	1020			-14.5			-16	91	-27.5			
18	1100			-11.7			15	-82	-24.7			
19	1210			-17.2			18	99	-30.2			
20	1845			-16.7			17	98	-29.7			

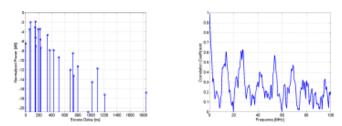
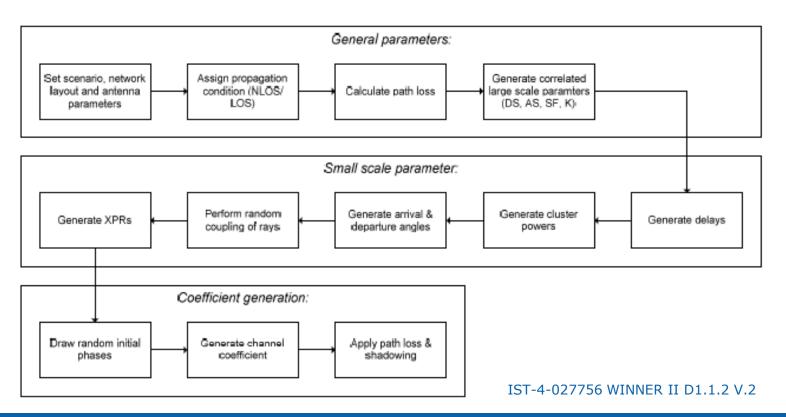


Figure 6-12: PDP and frequency correlation (FCF) of CDL model.


IST-4-027756 WINNER II D1.1.2 V.2

- Urban Macro-cell Channel Environment (3GPP and IEEE 802.16m)
 - 20 "Clusters" of delays with AoA and AoD associated with each "cluster"
 - Each Cluster contains 20 plane waves of random phase but identical amplitude for Rayleigh fading
 - AoD mean and spread (small at <u>2 deg.)</u> characterizes BS
 - AoA mean and spread (large at <u>15 deg.</u>) characterizes MS

Channel Simulation Procedure (Winner II)

- Allows for full network simulation to assess true network capacity
- Highly accurate modeling factors in such key elements as antenna patterns

Directional Model Impact on Link

•Impact on Communication Model – how does the channel affect the correlation between antennas?

- AoA spread per cluster improves capacity (more widespread scattering)
- More clusters makes for more independer channels for better capacity or better diversity – but they need to be widely dispersed
- Wider Antenna element separation can improve capacity for narrow AoA spread – needed for Base-station (typical only few degrees of AoD spread)
- High Base-station correlation can limit overall link capacity

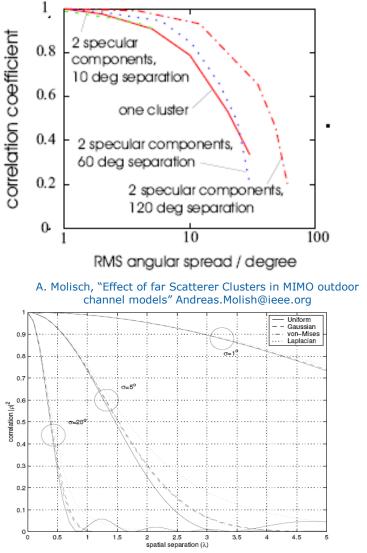


Figure 6: Spatial correlation between two antennas for mean AOA 90° (broadside) against spatial separation for Uniform, Gaussian, von-Mises, and Laplacian scattering distributions and angular spreads $\sigma = \{1^{\circ}, 5^{\circ}, 20^{\circ}\}$.

T. Pollock et. al., "Introducing Space into MIMO Capacity Calculations" Australian National University, tony.pollock@anu.edu.au

Directional Channel's Correlation impact on MIMO Capacity

- Ideal independently Rayleigh fading (from antenna to antenna) yields the best capacity
 - but it's rare that signals come equal strength from "all" directions
 - If they do, then capacity increases with the number of TX = RX antennas
- Real world channels are directional
 - The directionality comes from different clusters with associated cluster spreads of signals
 - Increasing mean angle of arrival can reduce effective aperture and resolvability decreasing capacity
 - Loss of Correlation only affects the capacity of antenna systems with two or more elements

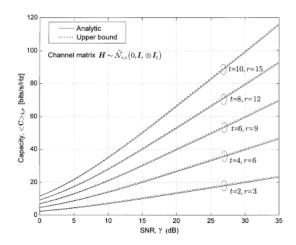
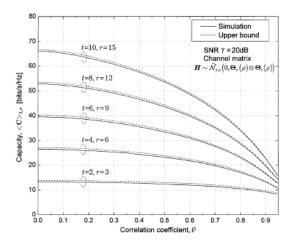
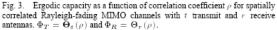
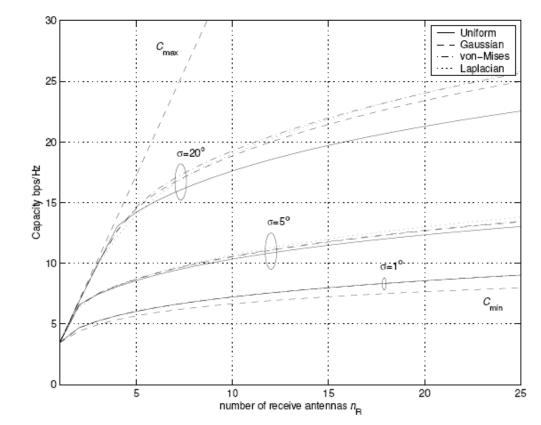




Fig. 1. Ergodic capacity of i.i.d. Rayleigh-fading MIMO channels with t transmit and r receive antennas.



How close to Theory are Real-world channels?

- Broadside Linear Array with aperture of 4λ
- 20 deg. spread gives close to theory for up to 4 or so antennas
- 1 deg. spread gives diversity only performance

T. Pollock et. al., "Introducing Space into MIMO Capacity Calculations" Australian National University, tony.pollock@anu.edu.au

Double Scattering and Keyhole Channels

For some channels that

- have long paths from TX to RX
- Go thru repeaters, or
- Diffract from the roof or around building corners
- Go thru tunnels
- They have limits in capacity
 - The double scattering channel curves at right has 6 scatters (in the tunnel, for example) – the capacity curves show limited gains after 6 antennas
 - The key hole channel is even more constrained

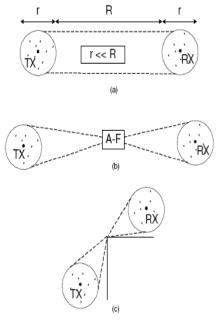


Fig. 1. Three propagation scenarios with double-Rayleigh fading. (a) keyhole created by two rings of scatterers separated by large distance [6]; (b) amplifyand-forward relay; (c) propagation via diffracting street corner [1].

J. Salo et. al. "Impact of Double-Rayleigh Fading on System Performance," 2006 1st International Symposium on Wireless Pervasive Computing

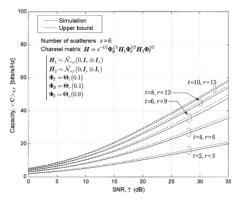


Fig. 5. Ergodic capacity of double scattering MIMO channels with t transmit and r receive antennas. s = 6, $\Phi_T = \Theta_t (0.1)$, $\Phi_R = \Theta_r (0.1)$, and $\Phi_S = \Theta_s (0.9)$.

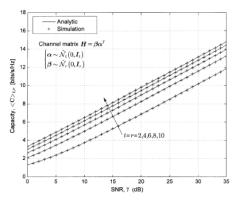


Fig. 6. Ergodic capacity of keyhole MIMO channels with t transmit and ι receive antennas.

H. Shin and J.H. Lee "Capacity of Multiple-Antenna Fading Channels: Spatial Fading Correlation, Double Scattering, and Keyhole, IEEE Trans Inform. Theory, Oct. 2003

Performance Summary

 Base-station antenna spacing should be large since the angular spread is relatively small

- Mobile-station antenna spacing is necessarily small but angular spreads are relatively large
- Much of the time, MIMO capacity can be close to theory
- But sometimes it will be constrained by real world channels such as tunnels, diffraction, etc.

Exploiting the Channel: Performance and Design Guidelines

- What can Module Designers do?
 - Exploit clusters that offer the "best capacity"
 - A proper balance must be maintained between interference rejection, diversity, and spatial multiplexing
- What can the operator do?
 - Provide better performance metrics for module designers and also to the users
 - Provide matched antenna configurations at the basestations
- What can the user do to improve TX and RX?
 - Avoid blocking the antennas hold the handset correctly
 - Welcome more cell towers/repeaters in the local neighborhood! (don't worry about property values!)

Overall Summary

• With Voice saturating, the growth areas will be in data

• Spectrum is limited, infrastructure costs are high and Shannon Limits have nearly been reached

 Systems have not exploited all the channel characteristics – most systems designed for non-directional or impulse response channel models

• Directional Channel Models (DCMs) are based on extensive real world channel measurements

• DCMs were developed for MIMO performance predictions – use them in network simulations

• DCMs provide much insight into how a more efficient uplink (and downlink) can be engineered

For More Information

- More on MIMO Capacity:
 - "Information Theory" ELEN244 Santa Clara University (Dr. Xiaoshu Qian)
- More on Antennas:
 - <u>Antennas from Theory to Practice</u>, Yi Huang and Kevin Boyle, 2008
 Wiley
- More on Directional Channels:
 - The COST 259 Directional Channel Model-Part II: Macrocells, "H. Asplund, et al., IEEE Transactions on Wireless Communications, Vol. 5., No. 12, Dec. 2006
- More on Power Amplifiers:
 - Poulin, D., "How to meet the design challenges of WiMax Power Amplifiers," Wireless Net Design Line, 10 June 2008
- Xiaoshu Qian <u>Xiaoshuqian@yahoo.com</u>
- Ernest Tsui <u>ett55@ieee.org</u>

