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The Internet of Things Age

o A world where everything is tagged, monitored and remotely
controllable via the Internet

Municipal Command Factory
& Control Center Optimization

7
Cloud & Services ‘!?

\ Logitics
\ S -\, Optimizator

(i b Hospital Traffic Flow
N ‘\ﬁ Optimization < Optimzaton | ‘\
e N ) AD / € \
tore ] } “ ey
)
( Conms J
kl X e Y y,
- J Optimization

— - 1344 INTELLIGE
Y \ Factory
" ' PO
2 INTELLIGENT-
S, HOSPITAL HICHWAY
et )
Digita

Inteligent

Medical
Devices Connected
Ambulances

Taffic
Cameras

Automated

Sqage Car System

o Let’s look at the past and what we can do with it in the future,
focusing on Energy Delivery
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Machines are already on the Internet

P CLIENT CLIENT
web browser| web browser

Internet orintranet or LAN

1P enabled
Meters

8
Instruments

SCADA node

SCADA node Setial

Industrial Automation -

FLC Micro Controllers

o Electric Power Systems, Pipelines (Water, Fuel), Building
Control, Manifacturing plants...

@ Monitoring: Sensor telemetry and databases

o Automation: The discipline focused on the design of automation
software is called Hybrid Control
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Supervisory Control And Data Acquisition

o "SCADA ” widely used Industrial Control (IC) reference model
o Its birth nest: the Electric Power sector

SCADA Master Station

Human Machine / Control Center

= Interface (HMI)
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Sensor/Actuator Level

o Very wide area systems (the size of a country) — hierarchical
control = “divide and conquer”
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The Programmable Logic Controller

PLC/Digital Relay: an industrial computer control system

Central
Processing
Unit

»w-HCD-CO '

o Data Items are identified by object (o), property (p) and time
(t). The value (v) is a function of o, p and t

v=F(o,p,t)

o Typical values for PLC are input/output single bit (coils) and
registers (16/32 bits, analog values)
o PLC activity:
@ Input Scan: Scans the state of the Inputs
© Program Scan: Executes the program logic
© Output Scan: Energize/de-energize the outputs
© Housekeeping: Update the state
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Communications among PLCs

Memory board Analog output module
Analog input module
CPU module Ladder Code

Power supply module X
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Base unit Inputg

" I Dummy module
Output module
[ Input module
Counter module, positioning module
Cables for Communication module
Connecting peripheral devices

e Programmable Logic Controller (PLC)
e Remote Terminal Units (RTU) _ “
e Intelligent Electr. Devices (IED)

o Originally most controllers used serial communications

1/0 controller
1/0 controller connectiong cable
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Networking among PLCs

Memory board Analog output module

Analog input module
CPU module Ladder Code

Power supply module
: A NN ‘

Base unit

I Dummy module
1/0 controller ‘ % Output module

1/0 controller connectiong cable ‘ Input madule

Counter module, positiening module
Communication module .
pninidy e This now can surf the Internet

e Programmable Logic Controller (PLC) ‘_/_,;,
e Remote Terminal Units (RTU) t;'
e Intelligent Electr. Devices (IED)

o Today most of them are Ethernet based, but this is changing,
wireless being the next big contender
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Security & Alarm

Radiators & Temperature

|
Monitoring & Control

o ZigBee was conceived for low power, low rate, sensor networking
in a variety of applications
o Embedded computer are like personal computers...

8/61



A watershed moment?

o The transition from Mainframe to PC changed computation

o In Power Systems SCADA was meant for the grid core
o [oT = intelligence at the edge of the grid
o Example: ZigBee Smart Energy V2.0 specifications define an
IP-based protocol to monitor, control, inform and automate the
delivery and use of energy and water
o Huge opportunity for change...
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Cognitive Power Systems



Decision Space for the Grid

Ramping Constraints
SO
Qq’o&f»
P&
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Bus/location

@ Plan the generation signal G;(t) to be equal exactly to the demand for
electricity L;(t) (load) (sold on a Retail Market)

@ Today tens of large generators serve millions of homes (2 orders of
magnitude difference)

@ Whole sale optimization objective: over a future horizon {2
— min) fQ Cost(G;(t))dt subject to
(1) Power Balance, (2) Gi(t) and Gi(t) bounds, (3) Thermal-constr.
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Multi-settlement optimization/market structure

@ Wholesale electricity market — a centralized optimization ( run
by an Independent System Operator — ISO)

Updated
Generation offers and pda ©
generation
parameters offers
Demand  \otwork Short-term  Network State
\l/ bids Model Load forecast Model estimator
Day-ahead Hour-ahead Real-time Balancing (no
Market Adjusting of Market market,
(scuc) Offers/Bids (SCED/OPF) obligatory)
Commitment notification Average hour ahead 5-10 minutes resource
Cleared generation schedules dispatchtargets

Cleared demand
Market clearing prices
LMPs

SCUC = Security Constrained Unit Commitment (who we buy from)
LMP = Local Marginal Prices (at what price at each bus and time)
OPF = Optimal Power Flow (how much)
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Optimizing the power flow

i Sample of

. Transmission
L Grid
limits

it
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@ Suppose 2 = t one time instant. We have the Optimal Power Flow
(OPF) problem:
— min C(G;(t)) subject to
(1) Demand = Supply + Losses, (2) G;(t) and Gi(t) below capacity,
(3) Thermal constr.
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[oT = millions of control knobs
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o Everything works without controlling them....why do we need to do it?
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Cognitive Electric Consumption

o For consumers the grid is plug and play — at most good
appliances reduce energy consumption

@ The moment at which we draw power is chosen carelessly
— we need to generate just in time
— we depend on fossil fuels to do that

e Demand is random but not truly inflexible, but today there is no
widespread standard appliance interface to modulate it

o Demand Response (DR) programs tap into the flexibility of
end-use demand for multiple purposes
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The role of flexible demand

o Large generator ramps + reserves for dealing with uncertainty
blow up costs and pollution

Without Demand response With Demand response

newable

Base-load Generation

Electric Power Demand
Electric Power Demand

time time

If we can modulate the load (via Demand Response Programs), we
can increase renewables and reduce reserves (cleaner, cheaper power)
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The Smart Grid vision

HEMS

Dyngmic Price

Aggregator

Large Population

of Appliances —
7 Retail
Smart Meters Market

Distributed generation

o Intelligent homes will be price responsive
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[oT that shifts demand in space and time

o Electric Vehicles!
Where and when they charge can be modulated...
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[oT that shifts demand in space and time

o Clouds!
Computation can shift swiftly where renewable power is
abundant and power is cheap...
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The Smart Grid System Challenge

Aggregator

. Day ahead savings
Ancillary Services

Retail Whole-Sale
Market Market

o Designing the price...
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Challenges for Demand Response (DR)

N

2 Aggregator . . |SO

Large Population Day ahead savings
of Appliances Ancillary Services

Retail Whole-sale

o Aggregation is needed (Whole Sale Market blind below 100MW)
o Challenge 1: Heterogenous population of appliances
o Challenge 2: Real time control of millions of them

o Challenge 3: Modeling their aggregate response in the market
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The Smart Grid model that was really emerging

o Price sensitive demand and Measurement € Verification

Price Signal

Response |

Baseline

Customers have a baseline load (measured with smart-meters)
LMP prices are communicated (via smart-meters)

Customers shed a certain amount of the baseline

The diminished demand is verified with smart-meters
Customers are paid LMP for the Negawatts (or punished)
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The Smart Grid model that was really emerging

o Price sensitive demand and Measurement € Verification

Price Signal

Response |

Baseline

Customers have a baseline load (measured with smart-meters)
LMP prices are communicated (via smart-meters)

Customers shed a certain amount of the baseline

The diminished demand is verified with smart-meters
Customers are paid LMP for the Negawatts (or punished)

®© 6 6 o o

o This is what the Smart-Grid was going to be

o Advocated by utilities, promoted by a FERC order (law) 745...
o ....blocked by the courts (DC Circuit Court)

23 /61



Alternatives?...

@ The notion of baseline and negawatts price is ill posed:
o How can I measure what you will be able to not consume and

verify that you have not consumed it?
o What is a good model for a price for lack of demand?

o Alternatives? Differentiating via Quantized Population Models

o Cluster appliances and derive an aggregate model
o The Internet of Energy: appliances that say what they want
o (Hide customers with differentially private codes)

[Chong85],[Mathieu,Koch, Callaway,’13],[Alizadeh, Scaglione, Thomas,’12]...

° 16 Homecrign
Clean rooms before you
return home?
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Population Load Flexibility

Definition of Flexibility

The potential shapes that the electric power consumption (load) of an
appliance or a popoulation of appliances can take while providing the
sought economic utility to the customer

Categories of appliances covered
@ Interruptible rate constrained EVs with deadlines and V2G v/

© Thermostatically Controlled Loads v
@ Deferrable loads with dead-lines v/
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Example of Load flexibility: Ideal Battery

One ideal battery indexed by
o Arrives at t; and remains on indefinitely
o No rate constraint
o Initial charge of S;
o Capacity E;

The flexibility of battery ¢ is defined as
ﬁi(t) = {Li(t)|Li(t) = dXi(t)/dt,Xi(ti) = Si,O < Xi(t) < Ei,t > ti}.

In English:
Load (power) = rate of change in state of charge z(t) (energy)

o Set L;(t) characterized by appliance category v (ideal battery)
and 3 continuous parameters:

0, =(t;, S, E;)

But how can we capture the flexibility of thousands of these batteries?J
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Aggregate flexibility sets

We define the following operations on flexibility sets £4(t), La(t):

L(t) + Lo(t) = {L(t)L(t) = Ly(t) + La(t), (L1 (1), L2(1)) € La(t) x Cz(t)}

ni(t) = {L<t>|L<t> =5 L), (L0 La(t) € mt)},

k=1

where n € N and 0£4(¢) = {0}.
o Then, the flexibility of a population PV of ideal batteries is

L= £ 1)

iepv
flexibility of population = sum of individual flexibility sets

What if we have a very large population? )
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Quantizing flexibility

Natural step — quantize the paramaters: 0; = (t;, S;, E;)

(4

0 — 19 € Finite set T°

(]

Quantize state and time uniformly with step ¢t =1 and dz =1

o Discrete version (after sampling + quantization) of flexibility:

o L3(t) = Flexibility of a battery with discrete parameters ¢

(]

Let a3(t) £ number of batteries with discrete parameters 9

cot) = ap(0Lst), D ap() =P (2)

veT? YETY
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Bundling Batteries with Similar Constraints

Population P}, with homogenous E but different (¢;, S;)

(4]

Define arrival process for battery

a;(t) = u(t — t;) — indicator that battery ¢ is plugged in

We prefer not to keep track of individual appliances

o Random state arrival process on aggregate

25 s —x)ai(t), z=1,....F

1EPE

Aggregate state occupancy

Zéx, z)a(t), z=1,...,F

1€P,
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Control Actions

Activation process from state 1’ to = :
dy..(t) = # batteries that go from state z to state z’ up to time ¢

Naturally, 0d, . (t) < ng(t).
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Controlled Aggregate Load flexibility

Lemma

The relationship between occupancy, control and load are:

E

na)(t + 1) = az(t + 1) + Z [dz’,m(t) - da;,z’(t)]

z/=0

E E
:ZZx—xadxw()

Notice the linear and simple nature of L(¢) in terms of d . (t)
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Bundling Batteries with Non-homogeneous Capacity

o Results up to now are valid for batteries with homogenous
capacity F
o The capacity changes the underlying structure of flexibility

o We divide appliances into clusters ¢ =1,..., Q" based on the
quantized value of E;

E=2 E=3
TR SR
ap a a(t) ) L ao(®) ar(t) ax(t) as(t)
\ %
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Quantized Linear Load Model

Load flexibility of heterogenous ideal battery population

Q E? E°
L(t) = {L(t>|L(t) =Y > > (@ —=2)adl (1)

q=1 =0 2'=0

ad? ,(t) € Z*, Za <nq()}

a’=1l

) = ad(t Z SE=1) = d (¢ = 1)]

Linear, and scalable at large-scale by removing integrality constraints

Aggregate model= Tank Model [Lambert, Gilman, Lilienthal,’06]
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Rate controlled, Interruptible charge, V2G (EVs)

o The canonical battery can go from any state to any state and has
no deadline or other constraints.

o What about real appliances? Some are simple extensions
o Rate-constrained battery chage, e.g., V2G
do 3(t)

o Interruptible consumption at a constant rate, e.g., pool pump,
EV 1.1kW charge

do 3(t)

ao(t) al(t) H.Q(t) ag(t)
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@ You can add deadlines using the same principle: cluster
appliances with the same deadline x?

o Then, you simply express the constraint inside the flexibility set

Q' EY E¢
zvm{ zzzmz e

g=1z=02'=

ada?,a:’( ) € Z+avx7$ S {0, ,...7Eq}

Z ad} (1) < nl(t),Ver < E? — n,(x") = 0} (3)

/=1
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Non-interruptible Appliances - Individual flexibility

Loads that can be shifted within a time frame but cannot be
modified after activation, e.g., washer/dryers

z;(t) € {0,1} = state of appliance ¢ (wainting/activated)

Impluse response of appliance 7 if activated at time 0 = g;()

Laxity (slack time) of x;

Li(t) ={Li(1)|Li(t) = (1) * Ozi(t), z:(t) € {0, 1}, (4)
zi(t) = ai(t = xa), wi(t = 1) <@i(t) < ai()}-

Load = change in state convolved with the load shape g¢;(¢)

(1) | I _]-ng(t) L_Z(E) = ¢;(t) * 0x;(t)
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Non-interruptible Appliances - Aggregate flexibility

o We assign appliances to cluster ¢ based on quantized pulses ¢(t)
o a?(t) = total number of arrivals in cluster ¢ up to time ¢

o d9(t) = total number of activations from cluster ¢ up to time ¢

a(t) g~ d'(t) ad(t) x g1 (t)
E— |~

a?(t) 5~ () [T] Ad2(t)  g2(t) L(t)
O—P L

a’(t) e d*(t) [ ad3t) x g3(t)
CO—pP L

o
Lo(t) :{ Z g1(t) x8d(t), d(t) € Z* (5)

aU(t) = a(t = x7), dU(t—1) < d(1) < a"(1) |
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How to generalize the information model

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7
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How to generalize the information model

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7

@ Event-driven: Appliances are available for control after ¢; with
initial state S;; (arrival is a;(t) = u(t — ¢;) unit step)

39 /61



How to generalize the information model

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7

@ Event-driven: Appliances are available for control after ¢; with
initial state S;; (arrival is a;(t) = u(t — ¢;) unit step)

© Divide and conquer: Define a representative set £y (1) for a given

appliances cathegory (v), quantizing possible parameters (¢) and,
if continuous, quantize the state (z)
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How to generalize the information model

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7

@ Event-driven: Appliances are available for control after ¢; with
initial state S;; (arrival is a;(t) = u(t — ¢;) unit step)

© Divide and conquer: Define a representative set £y (1) for a given
appliances cathegory (v), quantizing possible parameters (¢) and,
if continuous, quantize the state (z)

@ Aggregate and conquer: Describe total flexibility £Y(¢) using:
Aggregate arrival and state occupancy

Zé s —x)a;(t 25% ) — x)a;(t)

i€PUa i€P}
Aggregate control knob
d} () = # appliance moved from z to 2’ before time ¢
ad} ,(t) =d} ,(t+1)—d} () =# ... at time ¢
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Real-time: How do we activating appliances?

Arrival and Activation Processes

aq(t) and dy(t) — total recruited appliances and activations before
time ¢ in the ¢-th queue

o Easy communications: Broadcast time stamp Tge¢:
ag(t — Tact) = dy(2)

a’(t)

‘to - T(gct s to
o Appliance whose arrival is prior than T, initiate to draw power
based on the broadcast control message
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Differential Privacy

@ One can use a biased coin to add noise to the activation of a
certain appliance in cluster ¢

o This will hide the identity of who is active at a certain time

o With large aggregation the bias can be easily removed

Differentially Private
Survey Result a?(t)

User k did
NOT
respond to
the surve

User k did
respond to
the survey
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Quantized Models in Data Analysis and Simulation

Ex-ante Planning Real-time Control
@ From historical data forecast @ We perform DLS
statistics of arrivals in clusters @ Decide the profit
(e.g. [Alizadeh, Scaglione, Kurani, . hedul
Davies 2013] for PHEVs) maxizing schedule

@ Use a Model Predictive Control O Activate appliances
(MPC) framework with Sample Q@ Refresh future arrival
Average Approximation (SAA) to forecasts based on new
make market purchase decisions observations

LSE—){ Forecast Unit  Je—

A h .
Day-ahead Hour-ahead |74 Y[Real-time
Decision Unit Decision Unit Scheduler

P(h)| AP(h+1)
M(h m((h— 1)K + k)| ((h = DK

,1','((/; ~ 1)K + k)

System Operator
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-ante Stochastic Population Models

o In DLS, appliance arrival event is explicitly communicated

o Modeling challenge is similar to that of forecasting and serving
non-stationary traffic for a call-center...
PHEV charging events studied in [Alizadeh, Scaglione, Davies,
Kurani 2013]

Charge and Laxity > Clusters Arrival counts = Traffic
KS test confirms Poisson arrivals

—__PDF of recharge durations from sor Lt
0.025 UC Davis data <

Tas
00z 2

= S
2 oo z

g Sis
3

30

H

s 10 s 20
X Quantiles (EV arrivals)

130 00 240
Duration (minutes)

6 Principal components of

FOF of laxity of dayiim charge requests d A2
2 —— Exponential fit - daytime daily arrival rate vectors
—— PDF o laxity of nighttime charge requests
. — Lognormai it - nighttme "
- e
zo8 04 ol MA,—' }"/ - . 5
9. ‘M%‘f*" L]M )
& o
04 .
{ 1%}
02
o p
° 5‘””"’—77,,,
0 5 25 30 “ S
.

10 15 20
Laxity (Hours)
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Day Ahead Market Level Simulation

o Population of 40000 PHEVs + 1.1 kW non-interruptible charging

o Tank model = PHEVs effectively modeled as canonical batteries

-3
S

a
S

DA marginal price ($/MWh)

0 5 10 15 20 2 3 ES
Time (hours)

—Uncontrolled load profile
110|Optimized DA bid using tank model
- Real-time Load - MPC

Load (MW)

e Real-world plug-in times
and charge lengths

e 15 clusters (1-5 hours
charge + 1-3 hours laxity)
e PHEV demand = 10% of
peak load

e DA= Day Ahead

e PJM market prices DA
10/22/2013 e Real time
prices = adjustments cost
20% more than DA

e DA = LP + SAA with
50 random scenarios +
tank model

e RT = ILP + Certainty
equivalence + clustering
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Proposed scheme

o Quantized Deferrable EV model

o Load following dispatch very closely when using our model

110 -—Base load with no PHEVs
—Total uncontrolled load profile|
100/ Optimized DA bid using our
clustering method
. 90|---Real-time load - MPC
=
=
S 8or
©
S
70r
60-
I I . . I . )
50O 5 10 5 20 25 30 35

e Same setting
e DA = LP + Sample Average ~ E{a?(t)} (50 random scenarios) + clustering
e Real Time Control = ILP + Certainty equivalence + clustering
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Regulation through TCL loads

Regulation market:
o To participate the aggregator must be able to
@ Increase/decrease demand by a certain step of variable height m
from the baseline
© Hold the demand at that value for a certain duration £ (follow
the AGC signa)
o We evaluated & to be the 97 % quantile of the zero-crossing time
from historical AGC signals (19 min. based on PJM signals)

o Capacity estimated for the population of 10000 home air
conditioners is 2.05 MWs

Q
M = thian(t)
q=1

where M9(t) is the maximum deviation m from the baseline that
a load in cluster ¢ can tolerate at time ¢ with 0.05m error
(determined simulating the response of each cluster using £9(¢))
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Regulation through TCL loads

o Real Time the TCLs are controlled for 6 h based on clustering
deadlines (60 clusters)

o Temperature is Jan 29th 2012 in Davis;

e =; =¢&; ~ U([2000,4000]) Btu/h, k; =~ U([50,200]) W/C, z} ~
u([69, 75]), B; ~ U([2,4]) F

5
2

i \} \/
g

gty J{\WM"AV‘“ NI

55 —Target load (baseline + regulation signal) | 1 S0 0 1S 200 280300 350
H - Actual load o7

—Baseline load g7
5 I T n T T T L 2 70
. e R B

Time (minutes)

Figure : Simulated response of the TCL population (10000) to regulation
signals and three 2 ton A/C units temperatures. The y-axis range i=

comfort band.
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Pricing specific flexible uses
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Dynamically Designed Cluster-specific Incentives

o Characteristics in ¢ have 2 types: intrinsic and customer chosen
o We cluster appliances based on intrinsic characteristics
o Customer picks operation mode m, e.g., laxity x based on price

We design a set of incentives ¢%9(t), m = 1,..., M"? for each cluster

Recruitment,
Notice

Direct

Aggregator
DLS incentive menu for 1.1IKW battery charge requests
Incentive Charge| 1hr |2hrs |3hrs |4hrs
Design and Length
Recruitment Laxity
Unit 1hr 30)0’5 $0.13 [$0.19 | $0.19
2hrs $6.09 $0.22 | $0.25
$0.19 | $0.25 | $0.3

Scheduling
Unit

[Alizadeh, Xiao, Scaglione, Van Der Schaar 2013], see also [Bitar, Xu 2013],
[Kefayati, Baldick, 2011]
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The advantage of differentiating pricing...

Price Direct Scheduling
Control Signal

Signal

Consumer demand
functions

Appliance
arrivals

Consumption Inter-temporal | Load Profile
Level Load Shifting

Decisions Decisions

Price
Signal

Consumer demand
functions

Appliance
arrivals

Consumption Inter-temporal | Load Profile

Level Load Shifting
Decisions Decisions

Figure : Differentiated Pricing and Scheduling (top) and Dynamic Retail
Pricing (bottom).

Both schemes harness a subset of the ¢rue flexibility of demand

LPR(1) C £(t)
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Incentive design

o Optimal posted prices? The closest approximation is the
“optimal unit demand pricing” (modes are correlated)

P4 P2 P3 Xz
A X . A *
X N
independent Correlated @

o Independent incentive design problem for different categories v
and clusters ¢ — Let’s drop ¢, v for brevity
o Aggregator designs incentives:

c(t) = [ea(t), ea(t), - ear ()],

o Customers respond by arriving in a cluster. The Aggregator
profit depends on the mode selection average probability:

_ Elam(c(t)i )}
P (1)]
p(c(t);t) = [Polc(t);t),. .., Pap(c(t); )] — what we need
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Modeling the customer’s decision

Approaches to model p(c(t);t)? (average probability that the
aggregator posts c¢(t) and a customer picks each mode m)

@ Bayesian model-based method: rational customer — good for
simulations and theory

@ Model-free learning method: customers may only be boundedly
rational. We need to learn their response to prices
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The whole picture

Pricing Incentive design:
@ Design incentives to recruit appliances
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The whole picture

Pricing Incentive design:
@ Design incentives to recruit appliances
Planning:
o Forecast arrivals in clusters for different categories
o Make optimal market decisions based on forecasted flexibility

od' () x g' (t)

(>] (2] [>]
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The whole picture

Pricing Incentive design:
o Design incentives to recruit appliances
Planning:
o Forecast arrivals in clusters for different categories

o Make optimal market decisions based on forecasted flexibility
Real-time:

@ Observe arrivals in clusters

@ Decide appliance schedules d4(t) to optimize load

a() @)@ P e CZRORY0

a*(t) @Olm 0d2(t) + g2(t) N L()
@O0 =L G

(t) (PO 0dt) % g (1)
@O0 =L
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Residential charging...

o Aggregator schedules 620 uninterruptible PHEV charging events

o Prices from New England ISO DA market - Maine load zone on
Sept 1st 2013

o How many do we recruit (out of 620) and with what flexibility?

80

Il Not recruited
1 hour laxity
|| M2 hours laxity
I3 hours laxity
4 hours laxity
5 hours laxity
6 hours laxity
7 hours laxity
8 hours laxity
(| @9 hours laxity
Il 10 hours laxity

Number of PHEVs
IS o
o o

N
o

Time (hour)

@ More savings in the evening...
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Welfare Effects in Retail Market

o Welfare generate via Direct Load Scheduling (DLS) vs. idealized
Dynamic Pricing (marginal price passed directly to customer - no
aggregator)

o Savings summed up across the 620 events (shown as a function of
time of plug-in)

__Total consumer population savings
through DLS participation
_.Total consumer savings through
a hypothetical optimal pricing scheme
---Consumer + Aggregator savings

1
3
T

w
T

N
[
T

N
T

Dollars per half hour
T

T

0.5

10 15 25
Time of day (in half hour intervals)
59 /61



Conclusion

o We have discussed an information, decision, control and market
models for responsive loads

@ These models allow to use high level data and convert them in
models of load flexibility for mapping data into models and for
scalable simulations
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Conclusion

o Extension: Model prosumers assets such as distributed renewable
resources, like roof-top solar
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