Computational Imaging:

From Photons to Photos

Peyman Milanfar



What is Computational Imaging?

Credit: Jason Salavon




Long and fascinating history

Harold “Doc” Edgerton (1903 — 1990)



“Stopping Time”




Dual Aims of Computational Imaging

Capture what | see (Photography)

e Take a nice picture (noise, dynamic range, etc.)
e Make me a better photographer.
e Do it with my simple camera.

Let’s have a look



Sensors: Form vs. Function

fo D3000

Mobile phone camera

Can these two ever be equally good at taking pictures?



Sensor Sizes in Popular Devices

Average Smartphone
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REUTERS/Adam Hunger, REUTERS/Kim Kyung-Hoon, Apple




Physical Limitations = Opportunities

— Optics won’t get a lot better.

— Pixels can’t get much smaller.
— Limited by optical wavelengths

— Sensor won’t get much larger
— Limited by cost and form factor

e Need:

e Better Capture Protocols

e Clever Algorithms



Standard shot With Lens Blur
Credit: Sascha Haeberling




BUSINESS INSIDER




Mobile Imaging is Totally Dominant

Shift in Focus

The global smartphone market
has skyrocketed while digital
cameras have foundered.

Total digital
cameras’

10 11 12
“Includes compact, mirrorless and
single-lens reflex cameras TForecast

Source: IDC
The Wall Street Journal
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1,000,000,000,000

Roughly a photos shared on

social media (in 2014)




Evolution of the (Smart)phone
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Dual Aims of Computational Imaging

Capture what | see/like  (Photography)

e Take a nice picture. (noise, dynamic range, etc.)
e Make me a better photographer.
e Do it with my simple camera.

Capture what | can’t see (Science, Military)

e Seein the dark
e View fast, slow, small, or faint phenomena
e Detect, magnify subtle changes



Yosemit Valley, California

At night

(Jesse Levinson Canon 10D, 28mm f/4, 3 min, I1SO 100, 4 image pano)




Can’t “see” most of nature that surrounds us
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Infrared




Gamma-ray







Seeing Far Away

Credit : Florian Kainz




Seeing Far Away

Top part of a water tower imaged at a (horizontal) distance of 2.4 km

X. Zhu, P. Milanfar, “Removing Atmospheric Turbulence”, PAMI, 2012




Seeing Small Things

X. Zhu, P. Milanfar, “Removing Atmospheric Turbulence”, PAMI, 2012




How Do We Make a High Quality Image?

~ P
MAKING A

PHOTOGRAPH

€L APARS

t » Ansel Adams’ first book, published 1935




How Do We Make a High Quality Image?

e Integration of Sensor and Computation plays a
key role in the image formation process.

Capture
Protocol

Sensor |




Computational Photography on Android

devCam
Main Interface Capture Designs Capture Output Directories
Example Applications devCam JSONSs devCam and MATLAB Device Database
devCam

Parameterized Camera Control for Algorithm Development and Testing

devCam is an app for parameterized image capture using Android devices. devCam makes it simple to capture
complicated sets of photographic exposures with user-defined values for standard photographic settings. It is
designed to give the user as much control as the camera allows, making use of the camera2 API (requires
Lollipop, Android 5.0+) to give the user manual control over the following (if the device is capable):

» Exposure time
ISO

Aperture

Focal Length
Focus Distance

devcamera.org

https://youtu.be/92fgcUNCHic?t=29m56s




Standard Burst Photography

Locked: Exposure, Focus




HDR Burst Photography

Locked Focus
Variable Exposure
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Focal Sweep Photography

Locked Exposure
Variable Focus




Part 2:

A general filtering framework



The Black Box
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How to design the black box

zj =) Wiy




Model for Many Parts of Pipline

Gain Control _
‘ White
A/D Converter ‘
/ - Balance
Possible LUT
Sensor with color filter array ?FE - Anelﬂciggront End.
(CCD/CMOS) ensorrelate processmg ‘

Color Space Noise CFA
Transform + Reduction/

Color Preferences Sharpening

Tone
Reproduction

{

IPEG )| Exif File Info

Compression

Michael Brown



Same weights everywhere
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Same Gaussian kernel everywhere.

output




Data-adaptive weights
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The kernel shape depends on the image content.




Method 1: Consider the histogram

Histogram yz

Just for illustration — we don’t really make the histogram.



# pixels

Counts how many of the pixels are close in value

Y1 Yn intensity



# pixels

Counts how many of the pixels are close in value to Y

H(y;) = >, K(yi —y;)
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Y Intensity
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# pixels

Y1 Yn intensity



#pixels — \Why only the box function?

Soft count of how many of the pixels are close in value to Y/ ;
n
H(y;) = 20 K(yi — ;)
1=1
K() : Symmetric

—
Y Intensity




# pixels

Intensity
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# pixels
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# pixels Smoothing the histogram

1 1
1 1
1 1 1
1 1 1

Intensity



# pixels Smoothed histogram

H(y;) = > K(yi — ;)
1=1 \

Intensity



Choices for the kernel: Gaussian

K(y; —y;) = exp(—|yi — y;|*/0%)

u=~0 o=0.447214

u=~0 o=2.23607




Modes (peaks) of the Histogram
# pixels

Peaks: How do we find them?

/ \

Y1 Ys Yn intensity



Mode Finding on the Histogram
Start with H(y;) = > K(y: — y;)
1=1
Fix yj — 1

Differentiate and solve: aggt) —

(Assuming Gaussian Kernel, for now.)



Peak of the Histogram Nearest (in value) to Y;
# pixels

> K(yi—y;)ys
Zj = —

> K(yi—y;)

1

Y1 95 Yn intensity



Let’s take a closer look

W K For each pixel, must
1

.. — (]
J K. . normalize so the
ZI; vJ weights sum to 1.

n
< j = Z I 19 Y; Just a weighted average
1=1

2. Wiy =1
1=1



Bilateral or non-local means kernels

Pixel values: K(yz — y]) — eXp(_‘y’L o y]|2/h’3)

Pixel positions: K(sz — xj) — exp(—|:E7; - xj‘z/hi)
Kij = K(yi — y;) K(z; — x;)

i/ The Euclidean distance
------ - 000 Vo2 + oy?
The photometric distance

oy = |yi — v

“““ INNNAANAA

ox = |z, — x|
The spatial distance




Faster Normalized Filtering

mn
> Ky
~ i—1
Zj — oy
> Ky
i—1

n
z K’LJ Yi Filter once

PO z—l

<J
Z K’Lg 1 Filter twice
N
Z ij Yi
o 1=1 Divide Pixel-wise
J d



The Black Box
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Each output pixel — Z] —

Global (or Local) Filters

All input pixels

ZWZQ yz/

T —

W1 /ows
T

W5 |

Data-dependent

matrix Image scanned

into a vector



Global Affinities
=7
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Local vs. Global Filter Matrix W

Local Filters Global Filters

Sparse, but high-rank Dense but low-rank



Choice of Kernels
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ox = |z — x|
The spatial distance

4

K(x; — x)

e Classical Gaussian Linear Filters




Eigenvectors of Linear Gaussian Kernel

Hermite-Gauss functions
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Eigenvectors of Linear Gaussian Kernel

Hermite-Gauss functions




Filter Eigenvectors

Orthonormal
eigenvectors



Spectral Filtering in Lower Dimension
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Low-light imag
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Multi-frame Upscaling/Zoom







Fused 4 images, denoised and upscaled by 4x
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