Computational Imaging:

From Photons to Photos

Peyman Milanfar

What is Computational Imaging?

Credit: Jason Salavon

Long and fascinating history

Harold "Doc" Edgerton (1903 – 1990)

"Stopping Time"

Dual Aims of Computational Imaging

Capture what I see

(Photography)

- Take a nice picture (noise, dynamic range, etc.)
- Make me a better photographer.
- Do it with my simple camera.

Let's have a look

Sensors: Form vs. Function

Mobile phone camera

Can these two ever be equally good at taking pictures?

Sensor Sizes in Popular Devices

Physical Limitations -> Opportunities

- Optics won't get a lot better.
- Pixels can't get much smaller.
 - Limited by optical wavelengths
- Sensor won't get much larger
 - Limited by cost and form factor

- Need:
 - Better Capture Protocols
 - Clever Algorithms

Both are from Nexus 5

Standard shot With Lens Blur

Credit: Sascha Haeberling

Mobile Imaging is Totally Dominant

The global smartphone market has skyrocketed while digital cameras have foundered.

*Includes compact, mirrorless and single-lens reflex cameras †Forecast

Source: IDC

The Wall Street Journal

2015 -- Paris

2015 -- Moscow

2015 -- Sydney

1,000,000,000,000

Roughly a trillion photos shared on social media (in 2014)

Evolution of the (Smart)phone

Dual Aims of Computational Imaging

Capture what I see/like (Photography)

- Take a nice picture. (noise, dynamic range, etc.)
- Make me a better photographer.
- Do it with my simple camera.

Capture what I can't see (Science, Military)

- See in the dark
- View fast, slow, small, or faint phenomena
- Detect, magnify subtle changes

Yosemit Valley, California At night

(Jesse Levinson Canon 10D, 28mm f/4, 3 min, ISO 100, 4 image pano)

Can't "see" most of nature that surrounds us

Infrared

Seeing Far Away

Credit: Florian Kainz

Seeing Far Away

Top part of a water tower imaged at a (horizontal) distance of 2.4 km

Seeing Small Things

How Do We Make a High Quality Image?

Ansel Adams' first book, published 1935

How Do We Make a High Quality Image?

 Integration of Sensor and Computation plays a key role in the image formation process.

Computational Photography on Android

devCam

Main Interface Capture Designs Capture Output Directories

Example Applications devCam JSONs devCam and MATLAB Device Database

devCam

Parameterized Camera Control for Algorithm Development and Testing

devCam is an app for parameterized image capture using Android devices. devCam makes it simple to capture complicated sets of photographic exposures with user-defined values for standard photographic settings. It is designed to give the user as much control as the camera allows, making use of the camera API (requires Lollipop, Android 5.0+) to give the user manual control over the following (if the device is capable):

- · Exposure time
- ISO
- Aperture
- Focal Length
- Focus Distance

devcamera.org

https://youtu.be/92fgcUNCHic?t=29m56s

Standard Burst Photography

Locked: Exposure, Focus

HDR Burst Photography

Locked Focus Variable Exposure

Focal Sweep Photography

Locked Exposure Variable Focus

Part 2:

A general filtering framework

The Black Box

How to design the black box

$$\widehat{z}_j = \sum_{i=1}^n W_{ij} \ y_i$$

Model for Many Parts of Pipline

Same weights everywhere

Same Gaussian kernel everywhere.

Data-adaptive weights

The kernel shape depends on the image content.

Method 1: Consider the histogram

Just for illustration – we don't really make the histogram.

pixels

pixels

 y_j

intensity

pixels Why only the box function?

Soft count of how many of the pixels are close in value to y_j

$$H(y_j) = \sum_{i=1}^n K(y_i - y_j)$$

$$K(\cdot)$$
 : Symmetric

Choices for the kernel: Gaussian

$$K(y_i - y_j) = \exp(-|y_i - y_j|^2/\sigma^2)$$

Computed by Wolfram Alpha

Modes (peaks) of the Histogram

Mode Finding on the Histogram

Start with
$$H(y_j) = \sum_{i=1}^n K(y_i - y_j)$$

Fix
$$y_j = t$$

Differentiate and solve: $\frac{\partial H(t)}{\partial t} = 0$

$$\widehat{z}_j = \frac{\sum\limits_{i=1}^n K(y_i - y_j)y_i}{\sum\limits_{i=1}^n K(y_i - y_j)}$$

(Assuming Gaussian Kernel, for now.)

Peak of the Histogram Nearest (in value) to y_j

pixels

Let's take a closer look

$$W_{ij} = rac{K_{ij}}{\sum\limits_{i} K_{ij}}$$
 For each pixel, must normalize so the weights sum to 1.

$$\widehat{z}_j = \sum_{i=1}^n W_{ij} \; y_i$$
 Just a weighted average

$$\sum_{i=1}^{n} W_{ij} = 1$$

Bilateral or non-local means kernels

Pixel values: $K(y_i - y_j) = \exp(-|y_i - y_j|^2/h_y^2)$

Pixel positions: $K(x_i - x_j) = \exp(-|x_i - x_j|^2/h_x^2)$

$$K_{ij} = K(y_i - y_j) K(x_i - x_j)$$

Faster Normalized Filtering

$$\widehat{z}_j = \frac{\sum\limits_{i=1}^n K_{ij} y_i}{\sum\limits_{i=1}^n K_{ij}}$$

$$\widehat{z}_{j} = rac{\sum\limits_{i=1}^{n} K_{ij} y_{i}}{\sum\limits_{i=1}^{n} K_{ij} \ 1}$$
 Filter once

$$\widehat{z}_j = rac{\sum\limits_{i=1}^n K_{ij} y_i}{d_j}$$
 Divide Pixel-wise

The Black Box

Global (or Local) Filters

Each output pixel
$$\widehat{z}_j = \sum_{i=1}^n W_{ij} \ y_i$$

Global Affinities

Local vs. Global Filter Matrix W

Local Filters Global Filters

Sparse, but high-rank

Dense but low-rank

Choice of Kernels

Classical <u>Gaussian</u> <u>Linear</u> Filters

Eigenvectors of Linear Gaussian Kernel

Eigenvectors of Linear Gaussian Kernel

Hermite-Gauss functions

Filter Eigenvectors

Spectral Filtering in Lower Dimension

Low-light imaging

Denoised/Sharpened

Multi-frame Upscaling/Zoom

Fused 4 images, denoised and upscaled by 4x

Relevant Papers

- "A Tour of Modern Image Filtering",
 P. Milanfar, IEEE Signal Processing Magazine,
 no. 30, pp. 106–128, Jan. 2013
- "A General Framework for Regularized, Similarity-based Image Restoration",
 A. Kheradmand, and P. Milanfar, IEEE Trans on Image Processing, vol. 23, no. 12, Dec. 2014
- "Global Image Denoising", H. Talebi, and P.
 Milanfar, IEEE Trans on Image Processing, vol.
 23, no. 2, pp. 755-768, Feb. 2014
- "Nonlocal Image Editing", H. Talebi, and P.
 Milanfar, IEEE Trans on Image Processing, vol. 23, no. 10, Oct. 2014

http://milanfar.org

