Multi-Robot Adaptive Navigation

IEEE Control Systems Society, SCV
November 18, 2015

Dr. Christopher Kitts
Director, Robotic Systems Laboratory
Associate Dean of Research & Faculty Development
School of Engineering, Santa Clara University
Topics

- SCU robotics program
- Multi-robot control systems
- Adaptive sampling
• We design & operate advanced robotic systems and control technology for land, sea, air, and space
Robotic Systems Laboratory

• We conduct field operations to provide advanced engineering services to professional partners
Robotic Systems Laboratory

- We conduct field operations to provide advanced engineering services to professional partners
Robotic Systems Laboratory

• We do this with interdisciplinary student teams, from freshman to PhD, to provide world-class education and research experiences
Topics

- SCU robotics program
- Multi-robot control systems
- Adaptive sampling
Our specific interest is in applications requiring:

- Highly reactive to the environment
- Tight interaction between robots
- Relative spatial/position control
Multi-Robot Control Approach

Command

↓

Sense → Decide → Act

Robot

↓

Wheels
Multi-Robot Control Approach

Optimize Application ...

Vary Formation ...

Operate Robots ...

Diagram:

- Sense → Decide → Act
- Application
- Formation
- Robot
- Wheels
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient
Multi-Robot Systems

• Potential applications
 – Physically escort / guard objects
 – Implement sparse antenna arrays
 – Track the location of objects
 – Transport “large” objects
 – Efficiently find features in an environmental field

• Multi-robot are in their infancy
 – Perhaps they are a bad idea....
 – Hopefully, it is simply because it is hard to do!
Formation Control Results

Testbeds

- Basic Maneuvering
- Obstacle avoidance

![Testbed images](image)
Formation Control Results

Cluster x, y, z Actual vs Desired

Cluster α, β Actual vs Desired

Cluster ϕ_1, ϕ_2, ϕ Actual vs Desired
Patrolling / Guarding

Rotating Escort

Dynamic Guarding
Multi-Robot Control Approach

Cooperative Mission Management
Task coordination
Resource allocation
Topics

- SCU robotics program
- Multi-robot control systems
- Adaptive sampling
Navigation Approaches

- Standard navigation – follow a pre-planned path
Navigation Approaches

• Adaptive navigation – update your path as you go
Navigation Approaches

- Adaptive sampling – update your path AND your destination as you move by taking measurements
Navigation Approaches

- Adaptive sampling – update your path AND your destination as you move by taking measurements.

Find the hot spot. Read temperature, and change path.
• Adaptive sampling – update your path AND your destination as you move by taking measurements

But – need to know what direction to travel – direction of maximum increase – the “gradient.”
Adaptive Sampling

- A powerful concept
- Limited implementation in field
- Requires inefficient motion
Adaptive Sampling

• A powerful concept
• Limited implementation in field
• Requires inefficient motion

• A group of robots can instantly sense gradient
 – Control formation to get good 2-D spread of samples
 – Wave of research in multi-robot adaptive sampling
 – BUT FEW HAVE DONE IT!!!
Navigation Approaches

- Adaptive sampling – update your path AND your destination as you move by taking measurements

Find the hot spot.
Navigation Approaches

- Adaptive sampling – update your path AND your destination as you move by taking measurements

Patrol the perimeter
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Initial Simplifications

Fixed geometry and a fixed forward speed.

Vary only the direction of travel.

Note – formation control must be good enough to provide high quality gradient estimates.
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Gradient Estimation
Compute gradient given the instantaneous samples of the field from each distributed robot.
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Desired Bearing

Different navigation modes for:

- “up” gradient: bearing = gradient
- “down” gradient: bearing = -gradient
- CW contour: bearing = gradient - 90°
- CCW contour: bearing = gradient + 90°
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient

Turn Direction
Option for either an aggregate “column left/right” maneuver or a “flank” maneuver.
Adaptive Navigation Achieved

3 wheeled robots descend an RF field gradient
Adaptive Navigation Achieved

3 kayaks follow a bathymetric contour
Adaptive Navigation Achieved

3 kayaks follow a bathymetric contour

Contour Command: 11.5 meters
RMS Error: 1.2 meters
Sonar Accuracy 1 meter

Truth Data Produced by SCU SWATH Boat
Adaptive Navigation Achieved

3 kayaks follow a contour & descend a gradient
General “Scalar” Field
General “Scalar” Field

Extreme points indicate sources or sinks, such as hot spots or starvation points. Examples: source of pollution, anoxic zones
Contour lines indicate specific concentration levels or thresholds that define a zone. Examples: boundary of a toxic spill, definition of a safety zone.
Scalar fields include other features that hold significance for certain applications and which we’d like to locate and/or navigate with respect to...
General “Scalar” Field

Going down crests (up trenches): divides (accumulators) of gradient-driven products, and often paths of minimum descent (ascent) for mechanical advantage
Saddle points: Gateways often providing minimum energy paths between extreme points.
We are refining control primitives for all of these features, yielding a toolbox for the methodical global exploration of scalar fields.
We are refining control primitives for all of these features, yielding a toolbox for the methodical global exploration of scalar fields.
We are also exploring how to effectively vary the number of robots, how to optimally control the size and shape of the cluster, etc.
Ongoing & Future Work

- Comprehensive Adaptive Sampling
 - All primitive capabilities
 - Consolidated motion strategies
- 3-dimensional fields & vector fields
 - Aerial vehicles, ROV/AUVs, spacecraft
- Different types of fields
 - Terrain, RF, Chemical
 - Thermal, Turbidity
- Real field missions?
 - Oil spills
 - Pollution plumes
 - Hydrothermal vents
Summary

• Exciting & comprehensive field robotics program
• Particular interest in fielding multi-robot tasks with underlying formation control capabilities
• Initiative in multi-robot adaptive navigation for exploring scalar fields
Questions?

IEEE Control Systems Society, SCV
November 18, 2015

Dr. Christopher Kitts
Director, Robotic Systems Laboratory
Associate Dean of Research & Faculty Development
School of Engineering, Santa Clara University