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Further difficulties

The visual scene changes 
with eye and body movements

Seen by a noisy, 
biological system
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Recent advances in computer vision

Top 5 classification:
Carpet
Sharpei
Pug
French Bulldog
Mastiff

Object localization

Image segmentation

Sentence captioning
“Three dogs on a carpet”
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A brief history of deep learning

Russakovsky et al. arXiv, 2014 

human benchmark 0.051
(Andrej Karpathy, OpenAI)
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A small sample of what we can still learn 
from biology

Robustness to 
noise Efficiency

Szegedy et al., 2013
250 W per GPU

~20 W per brain

Working with 
time



Outline

What we can still learn from biology?

What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?

• architecture
• performance
• generalization
• model features
• capturing uncertainty
• efficient coding





retina
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The retina is the first step of vision

Baccus 2007 to brain

photoreceptors

Masland 2001
rat, rabbit, cat, and monkeyretinal ganglion cells

bipolar cells



Our experimental setup
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Mainen and Sejnowski, 1995

response to one trial
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Each action potential is considered 
a binary event

Mainen and Sejnowski, 1995

response to one trial

response over many trials



Responses are very reliable for 
strong stimuli

Mainen and Sejnowski, 1995

response to one trial

response over many trials



We can simultaneously record many cells
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Neural computations under natural stimuli

microelectrode array

time to spike (ms)

retinal ganglion 
receptive field

0-400 -200

low rank spatio-temporal decomposition

light intensity



Neural computations under natural stimuli

microelectrode array

time to spike (ms)

retinal ganglion 
receptive field

0-400 -200

light intensity



Neural computations under natural stimuli

microelectrode array

?



How well do linear-nonlinear models explain 
the retina in natural vision?

see also
Heitman et al., 2014

ganglion response 
to natural scenes

LN model prediction

Pearson correlation 
of 0.2
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What we can still learn from biology?

What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?

• architecture
• performance
• generalization
• model features
• capturing uncertainty
• efficient coding
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by comparison, the ganglion’s receptive field for this 
stimulus is 100,000 parameters

parameters
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CNNs approach retinal reliability
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Event detection analysis
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CNNs trained on less data outperform 
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What we can still learn from biology?

What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?

• architecture
• performance
• generalization
• model features
• capturing uncertainty
• efficient coding



CNN models generalize better than 
simpler models
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What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?
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Model trained on responses to natural 
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Features bear striking resemblance to 
unobserved structure in retina

Data courtesy of David Kastner
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What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?

• architecture
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• efficient coding



How certain are we about our predictions?

training data test data

cat or dog?

m
od

el



How certain are we of these spikes?
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How certain are we of these spikes?

tri
al

s

a good model of the retina should capture both the mean response 
and its variance



But how can deep learning models 
capture uncertainty?



We do lots of probabilistic tricks during 
training however…

dropout

drop connection with probability p

Gaussian noise injection
inject hidden units with noise of 

variance σ2



We now have deep probabilistic models

we control the 
noisiness by adjusting 
standard deviation of 
noise injection

trial 1
trial 2
trial 3
trial 4
trial 5
data



Mean-variance relationships
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Model has lower variance than data
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However model uncertainty has same 
scaling relationship as the retinaA B
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This is not true when noise is injected 
after training
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What we can still learn from biology?

What is the retina and what does it do?

What can we learn from convolutional neural 
network models of the retina?

• architecture
• performance
• generalization
• model features
• capturing uncertainty
• efficient coding
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receptive field Ganglion cells, n = 13
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CNNs capture substantially more retinal 
responses than previous models.

CNNs also generalize better to different 
stimuli classes.

CNN learn the internal, unobserved 
nonlinear structure of the retina

We can capture not only the mean 
response of the retina well, but also its 
noise distribution… from single trial data

Our CNN models reproduce principles of 
signal processing in the retina, 
decorrelating the visual world



Conclusion
… …

time
8 subunits 16 subunits

convolution
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responses

Systems identification in 
nonlinear, natural environments

Quantify neuroscience design 
principles for use in computer vision
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