5.4: A Single-Chip, Dual-Band, Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN

Masoud Zargari¹, Steve Jen², Brian Kaczynski², MeeLan Lee², Michael Mack², Srenik Mehta², Sunetra Mendis², Keith Onodera², Hirad Samavati², Weimin Si², Kalwant Singh², Ali Tabatabaei³, Manolis Terrovitis², David Weber², David Su² and Bruce Wooley⁴

¹Atheros Communications, Irvine, California
²Atheros Communications, Sunnyvale, California
³IRF Semiconductor, Cupertino, California
⁴Stanford University, Stanford, California

Outline

Introduction

Overall System Architecture

- **Circuit Design**
 - Receiver
 - Transmitter

□ Summary

IEEE 802.11 Wireless LAN

	IEEE 802.11a	IEEE 802.11b	IEEE 802.11g
Available Spectrum	555MHz	83.5MHz	83.5MHz
Frequency of Operation	5.150 - 5.350 GHz 5.470 - 5.825 GHz	2.400 - 2.483 GHz	2.400 - 2.483 GHz
non-overlapping channels	27	3	3
Modulation	OFDM	ССК	CCK/OFDM
Data Rate	6 - 54 Mbps	1 - 11 Mbps	1 - 11 Mbps 6 - 54 Mbps

Overall System Architecture

Transceiver Architecture

Dual conversion with sliding IF

- Low LO leakage
- Weak LO pulling
- No need for complicated DC offset cancellation
- Can be designed to have comparable power dissipation to direct conversion

Frequency Plan

Share the signal path between different modes Reduce the die size

Receiver Block Diagram

Low-Noise Amplifier (LNA)

Overall Receiver NF = 4.5/5.5dB @ 2.4/5GHz

Receiver Baseband Filters

Baseband Filters Frequency Response

Over Process and Temperature

5GHz Receiver Linearity

5GHz Receiver Sensitivity

Transmitter Block Diagram

Transmitter Baseband Filters

- **G** 3rd order Butterworth, with $f_{3dB} = 15MHz$
- □ Needs to be flat within 0.5dB in the passband
- Requires 40dB attenuation at the DAC sampling frequency of 160MHz
- □ No auto-tuning required

PA with Dynamic Biasing

OFDM signal has a 17dB peak-to-average ratio BUT signal peaks are infrequent

Simplified PA Block Diagram

Simplified PA Schematic

2.4GHz PA Characteristics 64-QAM

2.4GHz Transmitter Performance

EVM @ P_{out} = 5dBm

Spectral Mask

Synthesizer Phase Noise

Measured at the RF output

Die Micrograph

Measured Performance

Technology	0.25 μ m CMOS, 1P5M
Transmitter Power Dissipation 2.4 GHz 5 GHz	741 mW @ Pout = 5 dBm 710 mW @ Pout = 5 dBm
Receiver Power Dissipation 2.4 GHz 5 GHz	370 mW 320 mW
TX EVM 2.4 GHz 5 GHz	-32 @ Pout = 5 dBm -30 @ Pout = 5 dBm
RX Noise Figure 2.4 GHz 5 GHz	4.5 dB 5.5 dB
Phase Noise @ 100 kHz offset 2.4 GHz 5 GHz	-109 dBc/Hz -107 dBc/Hz

Conclusions

- IEEE 802.11a/b/g radio transceiver in 0.25 µm standard CMOS
- No external filters
- Sharing of the blocks between the 2.4 and 5GHz modes of operation: reduced die size
- Integrates:
 - Dual-band Receiver
 - 4.5/5.5dB noise figure for 2.4/5 GHz
 - Dual-band Transmitter
 - -32/-30dB EVM @ Pout=5dBm for 2.4/5 GHz
 - Frequency Synthesizers
 - -109/-107 dBc/Hz @100KHz offset for 2.4/5GHz

Acknowledgements

Support of the entire Wireless Design Team at Atheros in particular: H.Dieh, J. Lu, J. Thomson, R. Yu, G. Hsieh, W. McFarland, N. Zhang, P. Husted, D. Johnson, C. Lee, D. Nakahira, M. Robinson, J. Zheng, P. Dua, J. Chako, A. Shor and A Dao