## A Baseband Mixed-Signal Receiver for 1Gbps Wireless Communications at 60GHz



David A. Sobel Apr. 16, 2009

### The 60GHz Opportunity



- Unprecedented amount of unlicensed spectrum
- Few regulatory specifications
- Small wavelength allows for multi-antenna approach

### Wireless HD Video Requirements



- Uncompressed in-home HD media distribution
- Fast transfer/sync of media to a portable device
- Wireless PC display

### 60GHz High-speed Link: Key Channel and Circuit Challenges

Friis Transmission equation: Loss increases with  $f_c$ 

$$L = \frac{P_{RX}}{P_{TX}} = \frac{G_{TX}G_{RX}c^{2}}{f_{c}^{2}(4\pi d)^{2}}$$

- Power-handling, linearity, and noise performance of CMOS circuits at 60GHz
- Multipath channel issues
  - Specular, (moderately) reflective channel
- Baseband analog interface bottleneck
  - High-speed link → high-speed, high-resolution ADC/DAC?

#### **Research Proposal**

- Problem
  - Given 60GHz circuit and channel limitations, how do we design the baseband system and architecture for a power-efficient, high-data rate 60GHz wireless link?
- Approaches
  - Utilize beam-forming to combat channel loss and multipath
  - Identify modulation format most amenable to 60GHz RF circuits
  - Identify baseband architectures that allow for power-efficient, high data-rate baseband circuits
- Goals
  - Ease performance requirements on 60GHz RF circuits
  - Enable a low-complexity baseband architecture

#### **Presentation Outline**

- Overview of 60GHz channel and beamforming
- Modulation scheme considerations
- Baseband architecture exploration and proposed system prototype
- Low-power, high-speed mixed-signal circuits
- Measurement results
- Conclusions

### Shannon (and Some Practical) Limits

Shannon AWGN capacity limited by received power

$$C_{BW \to \infty} \approx 1.44 \frac{P_{RX}}{N_o}$$

- E<sub>b</sub>/N<sub>o</sub>=7dB for reliable communications
- Assumptions:
  - NF<sub>RX</sub>=10dB
  - Link distance = 10m
  - 10dB other losses
  - Omni-directional antenna (G = 0dB)



Omni-directional antenna can't provide 1Gbps

#### Beamforming and Antenna Gain



- Omni-directional antenna inefficient
- Antenna array forms narrow, steerable beam
- Increases antenna gain

#### Antenna Patterns and Multipath

- Multipath caused by reflections off obstacles in space
- Omni-directional antenna can have poor multipath profile



#### Antenna Patterns and Multipath

- Directional antenna restricts the spatial extent of signal to the LOS path
- Reduces reflections, improving multipath profile



### 60 GHz Channel Spatial Properties

- Specular, moderately reflective channel
  - Building materials poor reflectors at 60GHz
- "Typical" 60GHz indoor channel properties: [1]
  - Omni-antenna w/ LOS: T<sub>RMS</sub> ~ 25ns, K<sub>Rician</sub> ~ 0-5dB
  - 30° horn w/ LOS:  $T_{RMS} \sim 5ns$ ,  $K_{Rician} \sim 10-15 dB$
  - $K_{\text{Rician}} = P_{\text{LOS}} / \Sigma P_{\text{Multipath}}$

#### Antenna directivity reduces **multipath fading** problem to **constrained ISI** problem

[1] M. Williamson, et al, "Investigating the effects of antenna directivity on wireless indoor communication at 60 GHz," PIMRC 1997

#### **Presentation Outline**

- Overview of 60GHz channel and beamforming
- Modulation scheme considerations
- Baseband architecture exploration and proposed system prototype
- Low-power, high-speed mixed-signal circuits
- Measurement results
- Conclusions

#### **Modulation Scheme: RF Limitations**

- 60GHz CMOS PA will have limited P<sub>1dB</sub> point
  - Tx power constraint while targeting 1Gbps
  - Must use low PAR signal for efficient PA utilization
- 60GHz CMOS VCO's have poor phase noise
  - -85dBc/Hz @ 1MHz offset typical (ISSCC 2004)
  - Modulation must be insensitive to phase noise



### **Modulation Scheme: Comparisons**

| Modulation                                          | ofdm-<br>Qpsk     | High-order<br>modulation<br>(16-QAM) | Single-<br>carrier<br>QPSK | Constant<br>Envelope<br>(MSK) |
|-----------------------------------------------------|-------------------|--------------------------------------|----------------------------|-------------------------------|
| SNR <sub>req</sub> (BER=10 <sup>-3</sup> )          | 7dB               | 12dB                                 | 7dB                        | 7dB                           |
| PAR <sub>TX</sub>                                   | ~10dB             | ~5.5dB                               | ~3dB                       | 0dB                           |
| PA linearity req't                                  | High              | High                                 | Moderate                   | Low                           |
| Sensitivity to Phase<br>Noise                       | High<br>(ICI)     | High<br>(Symbol Jitter)              | Moderate                   | Low                           |
| Complexity of<br>Multipath Mitigation<br>Techniques | Moderate<br>(FFT) | High<br>(Equalizer)                  | High<br>(Equalizer)        | High<br>(Equalizer)           |

Beamforming to combat multipath. Simple modulation (MSK) for feasible CMOS RF circuits.

### **Example: PA and VCO nonidealities**



QAM 16 constellation with nonideal VCO and PA





OFDM, tone #5 with nonideal VCO and PA



Constellation observed at TX output

No thermal noise

Simulation conditions:

- P<sub>TX</sub>=P<sub>1dB</sub>
- SSPA AM/AM, AM/PM model
  [1]
- Lorentzian PN spectrum
  - f<sub>3dB</sub>=1MHz
  - -85dBc/Hz @ 1MHz

#### Simulation Results:

- MSK: SNR = 24dB
- SC-QPSK: SNR = 16dB
- OFDM: SNR = 9.5dB

#### **Presentation Outline**

- Overview of 60GHz channel and beamforming
- Modulation scheme considerations
- Baseband architecture exploration and proposed system prototype
- Low-power, high-speed mixed-signal circuits
- Measurement results
- Conclusions

#### **Baseband Architecture Considerations**

- Channel equalization still necessary
- DFE well-suited to cancel post-cursor multipath



#### **Baseband Architecture Considerations**

- Targeting 1 Gbps with "simple" modulation scheme
  - Must use low-order constellation, high baud rate
- Fast baud rate (1Gsym/s) → high-speed ADCs, VGAs
- Desire baseband architectures that:
  - Minimize ADC resolution
  - Minimize required ADC oversampling ratio
  - Incurs minimal SNR loss from above simplifications
  - Adaptable, robust to channel variations

Re-think "traditional" partitioning of analog and digital subsystems!

### **Digital Equalization**

• Multipath increases PAR  $\rightarrow$  additional ADC bits req'd



Note: Normalized amplitudes. Channel gain = 1

### **Mixed-Signal Equalization**

- Mixed-signal equalizer conditions input prior to ADC.
- Fewer ADC bits required



Note: Normalized amplitudes. Channel gain = 1

### Comparison: Digital vs. Mixed-signal DFE



- Mixed-signal equalizer requires ~2 fewer ADC bits
  - PAR reduction
  - Quantization effects in digital circuits

### "Hybrid-Analog" Receiver Architecture



- Synchronization in "hybrid-analog" architecture
  - ESTIMATE parameter error in digital domain
  - CORRECT for parameter error in analog domain
- Greatly simplifies requirements on power-hungry interface ckts (i.e. ADC, VGA)
  - Additional analog hardware is relatively simple

#### **Presentation Outline**

- Overview of 60GHz channel and beamforming
- Modulation scheme considerations
- Baseband architecture exploration and proposed system prototype
- Low-power, high-speed mixed-signal circuits
- Measurement results
- Conclusions

#### **Detailed Circuit architecture**



#### **Carrier Phase Rotator**

- Implemented as a vector multiplier
- Gilbert Quad is a current-domain multiplier
  - Weak-inversion MOS functions like translinear BJT



#### **Carrier Phase Rotator Schematic**

Input transconductor Gilbert quad **♀↓I**op l<sub>on</sub>↓9 uses local feedback M<sub>Q3</sub>  $M_{Q4}$  $M_{Q1}$   $M_{Q2}$ Gilbert quad 6 - $V_{c}$ Q + performs multiplication by  $\cos\theta$ ,  $\sin\theta$ 400uA 400uA 🕞 1kΩ  $\Lambda\Lambda$ V<sub>ip</sub> o M<sub>1</sub><sup>L</sup> -•Vin M<sub>1</sub> Control of V<sub>c</sub>  $M_3$ || M<sub>3</sub> required to obtain  $\theta$  $M_{2b}$  $M_{2b}$  $M_{2a}$  $M_{2a}$ 🚯 100uA 100uA (

Input transconductor

### **Carrier Rotation Tuning Circuit**

- Replica tuning circuit used to generate V<sub>c</sub>
- Can use feedback techniques for high accuracy θ tuning
- Rotation angle is due to TX/RX LO mismatch
  - 100ppm crystal
    → 6MHz BW



### Mixed-signal DDFS

- VGA's require gain of sin\u00f5, cos\u00f5
- Traditional DDFS have power-ineffecient ROM table



Can embed trig. operation in DAC element selection logic (\*)



(\*) see also S. Mortezapour, JSSC 10/99

### Analog DFE—Current-switching pairs

- Weighted subtraction of past decisions
  - Diff pair fully switches current
  - Each tap current is digitally controlled



### Adaptive DFE Tap Allocation

- 60GHz channel has "sparse" multipath reflections
- Adding more DFE taps adverse effects on equalization process
- Better to adaptively allocate fixed number of taps over DFE correction range





#### **Detailed Circuit architecture**



### **Current-Mode Buffer**

- CPR and DFE present large capacitive load
  - Buffer has low Z<sub>in</sub>
- Subsequent high-speed stage (THTIA) sensitive to capacitance
  - Buffer has high Z<sub>out</sub>
- Feedback used for output common-mode control



### Track-and-hold Transimpedance Amplifier (THTIA)

- During phi1, circuit is a transimpedance amp
- During phi2, output voltage is held across C
- Feedback factor ~ 1
  Enables high-speed operation



#### 4-bit, 2Gs/s Flash ADC architecture



#### Flash ADC—Active Averaging

 Staggered active averaging decouples preamp gain and averager input range



#### **Presentation Outline**

- Overview of 60GHz channel and beamforming
- Modulation scheme considerations
- Baseband architecture exploration and proposed system prototype
- Low-power, high-speed mixed-signal circuits
- Measurement results
- Conclusions

# SHARC chip

- 1.5mm x 1.55mm (pad-limited)
- Chip includes:
  - Two 2Gs/s, 4-bit ADCs
  - Carrier phase rotator (4x VGA's and 2x DDFS DAC's)
  - One 1Gs/s, 16-tap I/Q DFE
  - 9 LVDS output pairs
  - Digital controller



### SHARC chip (zoomed in)



### Measured Results (ADC)



- Nyquist-rate testing (F<sub>sig</sub>=1GHz, F<sub>clk</sub>=2.048GHz)
- 24.7dB peak SNDR, 35.5dB THD, 44dB IMD3
- INL and DNL less than +/- 0.2LSB

### Measured Results (CPR)



- Quadrature input:
  - $F_{IN} = 1014MHz$
  - $F_{DDFS} = -31MHz$
- Image tones
  -42dBc
- Leakage tone
  < -37dBc</li>
- Quadrature matching: 0.1dB, 0.7°

### Measured Results (DFE)

- Input signal: (Desired) sine wave and (unwanted) square wave
- With DFE off:
  - ADC clips
  - Heavy IMD (-19dB)
- With DFE on:
  - 33dB cancellation of square wave
  - IMD < -42dB



### **Performance Summary**

| Technology |                  | 90nm 9M1P Dig   | 90nm 9M1P Digital CMOS |  |  |
|------------|------------------|-----------------|------------------------|--|--|
| Package    |                  | Chip on board   | Chip on board          |  |  |
|            | Sample Rate      | 2 Gs/s          | 2 Gs/s                 |  |  |
| ADC        | Peak SNDR        | 24.8dB          | 24.8dB                 |  |  |
|            | SFDR             | 38dB            |                        |  |  |
|            | IMD3 -40dB       |                 |                        |  |  |
| CPR        | DDFS clock speed | 500MHz          | 500MHz                 |  |  |
|            | DDFS resolution  | 8 bits (1.4°)   | 8 bits (1.4°)          |  |  |
|            | Image tones      | <-37dB          |                        |  |  |
|            | I/Q matching     | < 0.1dB, < 0.7° |                        |  |  |
|            | Clock speed      | 1GHz            | 1GHz                   |  |  |
| DFE        | INL/DNL          | < 0.06 LSB      | < 0.06 LSB             |  |  |
|            | Linearity        | >40dB           | >40dB                  |  |  |
| Power      | CPR              | 11mW            | Total : 55mW           |  |  |
|            | DFE              | 14mW            |                        |  |  |
|            | ТНТІА            | 2 @ 5mW         |                        |  |  |
|            | ADC              | 2 @ 10mW        |                        |  |  |

Dynamic range comparable to 6-bit systems

- Compare to: 110mW for two 6-b, 2Gs/s 90nm ADC [VLSI 2007]
- Full carrier sync and DFE functionality

#### Conclusion

- An analysis of modulation schemes appropriate for use with a 1Gbps, 60GHz all-CMOS receiver
- The design of a mixed-signal baseband receiver architecture to reduce overall power dissipation and complexity
- A full analysis and simulation of the proposed receiver architecture
- The design and implementation of the proposed receiver in a 90nm digital CMOS process

### Acknowledgements

- BWRC member companies
- TSMC for providing silicon fabrication
- DARPA TEAM program
- NSF Infrastructre Grant
- Faculty, students and staff at the BWRC