A Digitally Modulated Polar CMOS PA with 20MHz Signal BW

Amirpouya Kavousian

Stanford University

RF Power Amplifiers

- □ Generate a high power replica of modulator output
 - Accuracy of replication → Linearity
- □ Convert DC energy to RF energy
 - Efficiency of this conversion → Efficiency

Linearity and Efficiency Trade-off

Higher efficiency:

- Battery lifetime
- Thermal management

Higher linearity:

- Sophisticated modulation
- Spectral efficiency
- Data rate

□ There is a trade-off between efficiency and linearity

Goal: higher efficiency linear amplifiers

Target Application

□ IEEE 802.11g for WLAN

- Orthogonal Frequency Division Multiplexing (OFDM)
- 2.4 GHz
- Peak-to-average-power-ratio (PAPR) = 52 (17dB)
- 16.6MHz signal bandwidth

CMOS RF Power Amplifiers

- □ Usual technologies: GaAs HBT, SiGe HBT, Si BJT, ...
- Advantages of CMOS:
 - Low cost, high yield
 - Possibility of integration with the transceiver
 - Possibility of new architectures
- Disadvantages of CMOS:
 - Low gain
 - Low breakdown voltage
 - Substrate effects

Research Goal

Explore new architectures to improve efficiency of linear power amplifiers in a 0.18µm standard CMOS technology with a focus on IEEE 802.11g as the target application

Outline

- □ **RF** power amplification
- Proposed power amplifier architecture
- □ Implementation
- Experimental results
- Conclusions

General Model of RF Power Amplifiers

- □ Transconductance mode
 - Class A-C
- Switch mode
 - Class D-F

Transconductance Amplifiers

Switch-mode Amplifiers

Summary of Classic PA's Performance

Class	Mode	Maximum Efficiency	Linearity
А		50%	Good
В	Trans-	78.5%	Moderate
С	Conductance	100%	Poor
D		100%	Poor
E	Switch	100%	Poor
F		100%	Poor

Wireless Communication Signals

Constant-envelope

- No amplitude information phase-only modulation
- Example: GSM
- Nonlinear power amplifiers such as class C, E, F
- Spectral efficiency traded for power efficiency

Non-constant envelope

- Amplitude and phase modulation
- Examples: Mobile 2.5G, 3G, and 4G and IEEE 802.11g
- Linear power amplifiers such as class-A.

Average Power Efficiency

$$\langle \eta \rangle = \int_{0}^{max \ power} \eta(p) f(p) dp$$

□ Low average power efficiency

■ 10dB back-off for class-A → 5% maximum average efficiency

Effects of Nonlinearity

- □ Spectral regrowth
- Constellation error

Spectral Regrowth

□ Nonlinearity → Spectrum spreading into adjacent channels

Spectral Mask

- □ IEEE 802.11g spectral mask
- Output should not exceed the mask

Constellation Error

Deviation from the ideal constellation point in I/Q plane

Error-vector-magnitude (EVM)

Definition: ratio of the root mean square (RMS) power of the error vector to the RMS power of the reference

EVM Requirements of IEEE 802.11g

Modulation	Data rate (Mbits/s)	EVM (dB)
BDCK	6	- 5
DESK	9	- 8
OPSK	12	- 10
QFSN	18	- 13
16 OAM	24	- 16
	36	- 19
64 0 0 0	48	- 22
	54	- 25

Proposed Integrated Polar Transmitter

Efficient constant-envelope amplification, followed by amplitude modulation with selectively switching unit amplifiers

Equal-Weighted Unit Amplifiers

- Advantages compared to binary-weighting:
 - Better matching and better DNL
 - Better dynamic performance
- □ Challenges:
 - Thermometer-decoding \rightarrow increased area
 - Need to combine RF power from multiple devices

Power Combining

Transmission-line-based combiners

- Too large to integrate on chip at 2.4GHz
- Difficult to match paths

□ Lumped-element combiners

- Large area for large number of amplifiers
- Low power efficiency
- Low bandwidth

Transformer-based combiners

- Low power efficiency
- Difficult to implement large numbers

Current-mode Power Combining

- On-chip
- Power and area efficient
- Requires transconductance amplifiers (which are class A)

Circuit Topology

- □ Current source PA's, wired in parallel at drains
- □ Thick-oxide cascode transistor acts as switch
 - Thick-oxide transistors allow higher power supply

Efficiency

- □ For a traditional class-A :
 - Linear relationship with P_{out}
- □ For this approach :
 - Square-root relationship with P_{out}

$$\eta = \frac{i_{RF}^2 \times \frac{R}{2}}{I_{DC} \times V_{DD}} \propto P_{out}$$

$$\eta = \frac{I_{DC}}{I_{DC}} \cdot \frac{\dot{i}_{RF} \times \frac{R}{2}}{V_{DD}} \propto \sqrt{P_{out}}$$

Average Efficiency

For a non-constant amplitude signal, the average efficiency is:

<	η	>	=		$\eta(p)f(p)dp$
				0	

Power backoff	Efficiency for traditional ideal class- A PA	Efficiency for proposed approach with class-A stages
6 dB	14.2 %	23.2 %
10 dB	5.0 %	14.0 %
12 dB	3.1 %	11.1 %

□ ~2-3x improvement in average efficiency

Spectral Images

- Result from the discrete-time to continuous-time conversion
- Can violate spectral mask or requirements on maximum out-of-band emission

Spectral Image Suppression

May use oversampling at input

Needs still higher oversampling ratio

L-fold Linear Interpolation

- L-fold linear interpolation* to suppress spectral images
 - Approximates linear interpolation

*Ref: Y. Zhou and J. Yuan, JSSC, Vol. 38, pp. 1182-1188

L-fold Interpolator Implementation

- The amplifier is divided into four sections that are clocked sequentially
- □ Challenge: introduces nonlinearites
 - Can remove completely by phase compensation (which requires an increased clock rate)
 - Can remove partially by oversampling

System Simulation Results

Circuit Schematic

Note: actual circuits are fully differential

Output Stage Layout

- 4 sections of 64 unit cells each
- Quadrature-phased clocks for the sections
- Output pads in center

From driver stage

Unit Amplifier Layout

Chip Micrograph

1.3x1.4mm² in 0.18μm CMOS

Test Board

4x5cm², 4-layer FR-4 board

Generating Phase and Envelope Signals

Generating Signals Off-chip

- **Decompose packet into phase-only modulated and envelope**
- Decompose the phase signal into I' and Q'
- □ Load the phase (I' and Q') and Envelope onto FPGA
- A Dual-channel DAC followed by a Quadrature modulator converting I' and Q' to RF phase
- □ Directly drive the digital envelope input

Demonstration System : Class-A Operation

□ PAE = 3.1%

Demonstration System: Polar Operation

Digital Envelope

□ Single Clock at 80MHz

Measurement Results

- P_{out} = 14.7dBm (13.6dBm including balun loss)
- □ PAE = 8.9% (6.7% including balun loss)
- More than double the efficiency of class-A mode

Demonstration System: Image Suppression

Quadrature-phased clocks

Image Suppression Measurement

Performance Summary

Technology	0.18μ m CMOS, 2P5M
Supply Voltage Digital Hardware Driver Stage Output Stage	1.8V 2.2V 1.7V
Linear 64 QAM OFDM Output Power	14.7dBm 13.6dBm (balun included)
EVM for 64 QAM OFDM	- 26.8dB
Dissipated Power Output Stage Driver Stage Digital	247mW 66mW 3.4mW
PAE (for 64QAM OFDM)	8.9% 6.7% (baluns included)
Center Frequency	1.56GHz
Total Chip Area	1.8mm ²

Conclusions

- Demonstrated a polar power amplifier with more than
 20-MHz bandwidth
- **Digitally modulated RF power amplification architecture**
- □ Meet the linearity required of 64QAM IEEE 802.11g signals
- Better than 2x improvement in power efficiency compared to backed-off class-A design
- L-fold linear interpolation used to suppress spectral images from the digital-to-RF power conversion

Acknowledgements

- □ Professor Bruce Wooley and Dr. David Su
- □ Mohammad Hekmat, Dr. Pelgrom, Dr. Shirvani
- □ C2S2 MARCO Focus Center
- National Semiconductor

Thank You!