how big can you dream?™

On-chip RF Isolation Techniques

Tallis Blalack, Youri Leclercq, Patrick Yue¹

¹Atheros Communications, Inc.

BCTM 12.1

October 1, 2002

1 CADENCE DESIGN SYSTEMS, INC.

CADENCE CONFIDENTIAL

IT DEPENDS!

• What is the maximum isolation I can achieve?

- How do I win the isolation argument with my co-workers?
- Will I get anything useful out of this talk?

Outline

cadence

- Technology impacts
 - Technology overview
 - Buried layers
 - Triple wells
- Grounding effects
- Guard rings
- Shielding
 - Patterned ground shield
- On-chip decoupling capacitance
- Summary

Non-conductive Backside

Non-conductive Backside

Tallis Blalack, BCTM 2002, Paper 12.1

Non-conductive Backside

Lightly-Doped Substrate Isolation

- Lightly doped material
- Maximum isolation when source and victim are closer to the guard band
- Bonding inductance will affect isolation

$$Isolation=20\log \frac{V_{victim}}{V_{noise}}[dBV]$$

(

$$R_{Substrate}$$

 $1 \circ - 0 2$
 $d_2 = 2 * d_1 : R_2 < 2 * R_1$

Floating Conductive Backside

Floating Conductive Backside

Floating Conductive Backside

BiCMOS Technology Basics

F. Clement in J. Huijsing et al, KAP, '99

Breaking the Buried Layer

Isolation for High Sensitivity

Sony Noise Simulation

- Substrate noise distribution
 SubstrateStorm
- Noise source injection points
 - Logic ground
- Noise source amplitude of 100%

cādence

NMOS: Triple Well Isolation

cādence

- Separate ground used for the digital core
- All simulations use SubstrateStorm with a 0.35 μm BiCMOS technology
- Remove triple well and compare with identical p+ guard ring

Package Effects on Triple-well Isolation

Guard Ring and Triple Well Isolation vs. Frequency -40 -50 -60 Attenuation (dB) -70 -80 -90 -100 -110 - TW_Vcc_0.5nH - Ring_0.5nH -Ring_0nH TW_Vdd_0nH -120 0.E+00 2.E+09 4.E+09 6.E+098.E+09 1.E+10 Frequency (Hz)

Tallis Blalack, BCTM 2002, Paper 12.1

Grounding Effects

cadence

- Use multiple supplies to isolate areas
- Minimize inductance

STMicroelectronics: LNA + Mixer Integration

- Initial design had one substrate ground
- Simulations showed too much noise coupling
- Separated supply regions to isolate LNA from mixer

One substrate ground

Two substrate grounds

Coupling Paths

Equivalent behavior with pad or seal ring !!!

Guard Rings in a Lightly-Doped Process [cadence]

- Guard rings are more effective in a lightly doped process
- A well region can break the channel stop and increase the isolation

Guard Ring Inductance Simulation Structure

cadence

Guard Ring Inductance Simulations

Tallis Blalack, BCTM 2002, Paper 12.1

Ericsson & STMicroelectronics: Singlechip BLUETOOTH ASIC

- 0.18 µm CMOS
- 2.5 3.0 V
- 75 mW in RX
- 90 mW in TX
- 2 MHz IF
- 5 GHz VCO
- 5.5 mm²
- Special attention to crosstalk

cadence **Guard Ring Width Simulation Structure**

Guard Ring Width Simulations

Tallis Blalack, BCTM 2002, Paper 12.1

Guard Ring Isolation Summary

The maximum achievable guard ring isolation is ?

Dependent on:

- Technology
- Spacing
- Width

. . .

- Grounding scheme
- Package parasitics

Shielding of Signal Lines

cadence

Patterned Ground Shield Design

Pattern

- Orthogonal to spiral

(induced loop current)

- Resistance
 - Low for termination of the electric field
 - Avoid attenuation of the magnetic field

Slot between Strips

Induced Loop Current

Q Improvement – Tank Impedance Cadence

Noise Coupling Measurement

Effect of Polysilicon Ground Shield on Cadence Noise Coupling

Conclusions on Patterned Ground Shield Cadence

- Improves Q by eliminating substrate loss
 - up to 33% at 1-2 GHz
- Improves isolation by preventing substrate coupling
 - up to 25 dB at 1 GHz
- Simplifies modeling
- Eliminates substrate dependency
- Requires no additional process steps

0.25 μm standard digital CMOS for 5 GHz WLAN

- Transmitter 22 dBm output power
- Receiver 8 dB noise figure
- –112dBc/Hz (∆f = 1 MHz)
- 40+ on-chip spirals with PGS
- Shielded RF signals and inductors
- Proper use of guard rings and substrate taps
- Separate supply domains

Atheros: 802.11a Radio Transceiver

Decoupling Capacitance Motorola: CMOS Broadband Tuner

L. Connell, ISSCC 2002 Tallis Blalack, BCTM 2002, Paper 12.1

cadence

Substrate Noise Suppressing Regulation Cadence

1.50

1.52

1.54

1.56

Simulated Substrate Noise, No Regulation

- Low resistivity epi substrate modeled as single node
- Decoupling capacitance used to supply local charge
- Peak current across bond wires much lower
- Ringing on substrate reduced
- ~9x noise reduction

≻81.7 mV to 9.37 mV

48

(µsec)

-38

1 42

1.44

1.46

cadence

Simulated Substrate Noise with Regulation

- On-chip voltage regulator added
- Decoupling capacitance at input and output of regulator
- ~100x reduction of noise
 >9.37 mV to 0.098 mV
- Minimized inductive connection to substrate

Motorola: CMOS Broadband Tuner

- Synthesizer generates 100 mA switching currents @ 12.5 MHz
- 50 860 MHz LNA
- 0.35 μm CMOS
 - heavily doped bulk
- 5 V supply
- 1.5 Watts
- 5 mm²
- 48 pin eTQFP

~25% of area to reduce substrate noise ~1000x

 \succ 81.7 mV to 98 μV

IT DEPENDS on

- Technology
- Frequency
- Grounding scheme
- Guard rings
- Package
- Decoupling capacitance

•

Acknowledgements

The authors would like to thank:

- Takeshita san and Kato san of Sony
- Dave Redmond of Motorola
- Andreia Cathelin and Didier Belot of STMicroelectronics
- Paul van Zeijl of Ericsson
- David Su of Atheros
- Larry Connell of Motorola