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Key Take-away Point

IT DEPENDS!

� What is the maximum isolation I can achieve?

� How do I win the isolation argument with my co-workers?

� Will I get anything useful out of this talk?
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Outline

� Technology impacts
� Technology overview
� Buried layers
� Triple wells

� Grounding effects
� Guard rings
� Shielding

� Patterned ground shield

� On-chip decoupling capacitance
� Summary
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Lightly-Doped Wafer Resistivity
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Lightly-Doped Wafer Resistivity
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Lightly-Doped Wafer Resistivity
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Lightly-Doped Substrate Isolation

� Lightly doped material

� Maximum isolation when source and victim 
are closer to the guard band

� Bonding inductance will affect isolation
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Lightly-Doped Wafer Resistivity
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Lightly-Doped Wafer Resistivity

TWafer d = TWafer TWafer
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Lightly-Doped Wafer Resistivity
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BiCMOS Technology Basics
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F. Clement in J. Huijsing et al, KAP, �99
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Buried Layer with Lightly-Doped Wafers

p- wafer
(~12 ohm-cm)

Tbulk (~400 um)

Tepi (~3 um)

Tburied (~1 um)

p epitaxial layer
(~1 ohm-cm)

p+ buried layer
(~0.005 ohm-cm)

Rbulkepi ~ 5 x Rburied
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Breaking the Buried Layer

p- wafer
(~12 ohm-cm)

Tbulk (~400 um)

Tepi (~3 um)

Tburied (~1 um)

n+ buried layer
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Sony: 622 Mb/s Optical Receiver IC

T. Takeshita, ISSCC 2002
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Sony Noise Simulation

trans-impedance
amplifier

W: 50 µm
W: 10 µm

N- layer breaking buried layer
substrate contact

� Substrate noise distribution
� SubstrateStorm

� Noise source injection points
� Logic ground

� Noise source amplitude of 100%

Double-guardNo guard ring

1% 0.05%20x noise reduction

1.65 to 100%
1.45 to 1.65%
1.25 to 1.45%
1.05 to 1.25%
0.85 to 1.05%

Noise amplitude
at substrate

0.65 to 0.85%
0.45 to 0.65%
0.25 to 0.45%
0.05 to 0.25%
0.00 to 0.05%



16 Tallis Blalack, BCTM 2002, Paper 12.1

NMOS: Triple Well Isolation

p- wafer
(~12 ohm-cm)

Tbulk (~300 µm)

Tepi (~3 µm)

Tburied (~1 µm)

n sinker
(~0.005 ohm-cm)

N+N+

p epitaxial layer
(~1 ohm-cm)

p+ buried layer
(~0.005 ohm-cm)

n+ buried layer
(~0.005 ohm-cm)



17 Tallis Blalack, BCTM 2002, Paper 12.1

Motorola: GSM/GPRS Baseband IC

Nwell
ipw

Analog

Nwell

Digital

P+ Substrate

Nwell

VDD VSS

ipw

Isolation Strategy

Benefits of IPW 
isolation

VDD VSS

D. Redmond, ISSCC 2002

Triple well
Guard ring
Reference

Process technology HiP7LP : 
(compatible with TSMC)

Gate length Lpoly 0.13 µm
Single gate Ox 30 A
Dual gate Ox 50 A
Supply voltage 1.6 to 3.0 V
Metal 5 layer Cu
Substrate P+
Nwell resistors 700 ohm/sq
Salicided Poly res.   7.0 ohm/sq
Metal Cap    0.8 fF/µm2
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Triple-well Simulation Structure

Vss

Vcc
or

Vdd
180 µm

Noise from 
inverter core

Triple 
well Sensor

1000 µmVcc

� Separate ground used for the digital core

� All simulations use SubstrateStorm with a 0.35 µm BiCMOS technology

� Remove triple well and compare with identical p+ guard ring
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Package Effects on Triple-well Isolation
Guard Ring and Triple Well Isolation vs. Frequency
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Grounding Effects

P- Bulk

P+

Vsub1

Rbulk

Risolation

Rbulk

Vsub2
Substrate 
Contacts

P+P+P+

Substrate 
Contacts

� Use multiple supplies to isolate areas

� Minimize inductance
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STMicroelectronics: LNA + Mixer 
Integration

� Initial design had one substrate ground

� Simulations showed too much noise coupling

� Separated supply regions to isolate LNA from mixer

One substrate ground Two substrate grounds
A. Cathelin, DATE 2002
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Coupling Paths

ANALOG

DIGITAL
Noisy

Sensitive

Asub

Dsub

Substrate
contacts

R1

R2

Equivalent behavior with pad or seal ring !!!
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Guard Rings in a Lightly-Doped Process

P- Bulk

N+N+P+ P+ P+N+

N Well

DGndAGnd

P channel
stop implant

AVdd

� Guard rings are more effective in a lightly doped process

� A well region can break the channel stop and increase the isolation
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Guard Ring Inductance Simulation 
Structure

45 µm 
wide

sensor

Vss
L

10 µm 
guard
ring

Noise from 
inverter core

1000 µm



25 Tallis Blalack, BCTM 2002, Paper 12.1

Guard Ring Inductance Simulations

Inductance Effects on Guard Ring Isolation (W = 10 µm)
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Ericsson & STMicroelectronics: Single-
chip BLUETOOTH ASIC

300 µm 
wide P+ 
guard band

� 0.18 µm CMOS
� 2.5 � 3.0 V
� 75 mW in RX
� 90 mW in TX
� 2 MHz IF
� 5 GHz VCO
� 5.5 mm2

� Special 
attention to 
crosstalk

P. van Zeijl, ISSCC 2002
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Guard Ring Width Simulation Structure

Vss
0.3 nH

10 µm 
wide

spacing

Noise from 
inverter core

Guard
ring Sensor

1000 µm
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Guard Ring Width Simulations

Guard Ring Width Effects on  Isolation (L = 0.3 nH)
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Guard Ring Isolation Summary

The maximum achievable guard ring isolation is ?

Dependent on:

� Technology

� Spacing

� Width

� Grounding scheme

� Package parasitics

� �
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Shielding of Signal Lines

p+

+ –

Vref

VrefVref

C

R

Use p diffusion or 
poly instead of nwell 
above several 
hundred MHz

Tie to reference bias

R << 1/ωC
(5 to 10 X)
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Patterned Ground Shield Design

� Pattern

� Orthogonal to spiral

(induced loop current)

� Resistance

� Low for termination of the 
electric field

� Avoid attenuation of the 
magnetic field
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Q Improvement – Tank Impedance 
Doubled
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Noise Coupling Measurement
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Effect of Polysilicon Ground Shield on 
Noise Coupling
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Conclusions on Patterned Ground Shield

� Improves Q by eliminating substrate loss 

� up to 33% at 1-2 GHz

� Improves isolation by preventing substrate coupling

� up to 25 dB at 1 GHz

� Simplifies modeling

� Eliminates substrate dependency

� Requires no additional process steps
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Atheros: 802.11a Radio Transceiver

� 0.25 µm standard digital 
CMOS for 5 GHz WLAN

� Transmitter 22 dBm output 
power

� Receiver 8 dB noise figure
� �112dBc/Hz (∆f = 1 MHz)
� 40+ on-chip spirals with PGS
� Shielded RF signals and 

inductors
� Proper use of guard rings and 

substrate taps
� Separate supply domains

D. Su, ISSCC 2002
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Decoupling Capacitance
Motorola: CMOS Broadband Tuner

L. Connell, ISSCC 2002
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Substrate Noise Suppressing Regulation
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Simulated Substrate Noise, 
No Regulation

� Low resistivity epi substrate 
modeled as single node

� Decoupling capacitance used 
to supply local charge

� Peak current across bond 
wires much lower

� Ringing on substrate reduced

� ~9x noise reduction

!81.7 mV to 9.37 mV
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Simulated Substrate Noise with 
Regulation

� On-chip voltage regulator 
added

� Decoupling capacitance at 
input and output of regulator

� ~100x reduction of noise

!9.37 mV to 0.098 mV

� Minimized inductive 
connection to substrate
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Motorola: CMOS Broadband Tuner

� Synthesizer generates 
100 mA switching 
currents @ 12.5 MHz

� 50 � 860 MHz LNA
� 0.35 µm CMOS

� heavily doped bulk

� 5 V supply
� 1.5 Watts
� 5 mm2

� 48 pin eTQFP

~25% of area to reduce 
substrate noise ~1000x
! 81.7 mV to 98 µV



42 Tallis Blalack, BCTM 2002, Paper 12.1

On-chip RF Isolation Summary

IT DEPENDS on
� Technology

� Frequency

� Grounding scheme

� Guard rings

� Package

� Decoupling capacitance

� �
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