Future Directions in Mixed-Signal IC Design

December 12, 2008 Boris Murmann <u>murmann@stanford.edu</u>

Growth

Business as Usual?

Murmann Mixed-Signal Group

Research Overview (1)

Digitally Assisted Data Converters **MEMS/Sensor Interface Electronics** Signal A/D Conditioning Digital Analog Media CLK Signal Digital Processing and Processing (DSP) M Proof Mass Transducers Signal D/A Conditioning 3 Feedback Detection Feedback 1-αz⁻¹ Z⁻¹ 1 Sensor C/\ 1-z⁻¹ 1-z⁻¹ 0 Filter V/F 5

Research Overview (2)

Research Overview (3)

Specific Examples

- Minimalistic pipeline ADC
 - □ Using a previously "unknown" amplification mechanism
- Digitally corrected track-and-hold circuit
 Analog-digital co-design
- Offset-calibrated accelerometer
 - □ Electro-mechanical co-design
- Analog circuit design using organic thin film transistors
 - Designing analog circuits using "lousy" technology

Pipeline ADC

9

Stage of a Conventional Pipeline ADC

Inefficiency of Class-A Amplifiers

11

The World's Most Efficient SC Amplifier (?)

[Hu, Dolev & Murmann, VLSI Symposium 2008]

Settling in Amplify Phase

Amplification Principle

Incremental Gain
$$\cong \frac{C_{gs} + C_{gd} + C_{gb}}{C'_{gd}}$$

Basic Amplifier Modifications

 Add C_{gs,ext} in parallel to C_{gs} for gain control

$$G = \frac{C_{gs,ext} + C_{gs} + C_{gd} + C_{gb}}{C'_{gd}}$$

Add I_{bleed} during amplify phase

Sample

Impact of I_{bleed} (Simulation)

Bleed current small, about 5μA

Pseudo-Differential Stage

17

Stage Schematic

18

Testchip Architecture

- Target 8-9 bits of resolution
 - 1-bit per stage
 - Reduced radix (G=1.7) for offset tolerance
 - Digital gain calibration [Karanicolas, 1993]
- 14 stages, no scaling
- Calibrated output encoded to 10 bits

Prototype ADC

- UMC 90-nm CMOS process
- 0.123mm² (excluding off-chip reference generators)
- 9.4 bits (685 levels), f_s = 50MHz

SNDR vs Input Frequency

- $f_s = 50 \text{ MHz}$
- At low f_{in}
 - □ SNDR = 49.4 dB
 - $\square ENOB = 7.9 bits$
- SNDR degrades by
 1.7 dB at high f_{in}

INL and DNL

- 9.4 bit resolution (685 levels), $f_s = 50 \text{ MHz}$
- DNL = +0.4/-0.4 LSB
- INL = +1.3/-0.9 LSB

Power

- 1.44 mW at f_s = 50 MHz
 - 0.49 mW amplifiers and biasing
 - 0.95 mW comparators and clocks
- At f_s = 50 MHz, only 9% of power is static

Comparison and Outlook

- And a start of the start of t

Driver Application

Medical ultrasound

- Want to implement 64+ high speed ADCs on a single chip
- Approach
 - Minimalistic, digitally assisted pipeline ADC
 - Exploit specific signal and system properties!

Ultrasound system block diagram.

Received Signals Are Highly Correlated

Phantom Image of Kidney

Received Signal Traces

Typical Heterodyne Receiver

IF Subsampling Receiver

Need ADC with high linearity at IF input frequencies

SFDR of Typical CMOS ADC

SFDR (dBFS) f_{IN} (MHz)

SFDR vs. f_{IN}

National ADC14155: 14bit, 155 MS/s, 1.1 GHz Bandwidth A/D converter

Achieving High SFDR (1)

- BiCMOS front-end
 - BJTs used as buffer for linear signal tracking and sampling
 - Can achieve SFDR>90dB up to 4th Nyquist zone at 125MS/s

A.M.A. Ali et al. "A 14 bit 125 Ms/s IF/RF Sampling Pipelined A/D Converter," IEEE CICC, Sep. 2005

Achieving High SFDR (2)

- Compensate nonlinearities by applying inverse nonlinear function to the digital output
 - **Roy Batruni**, <u>www.optichron.com</u>
- Issue: complexity, power

Judicious Modeling

 During tracking mode, the track-and-hold can be modeled as an RC circuit with an input dependent resistance

Digital Processor Diagram

Hardware Requirements

 The algorithm was implemented in Verilog and synthesized using standard CMOS cells in 90nm

Technology	90-nm CMOS
Clock speed	155 MHz
Latency	33 clock cycles
Number of logic cells	61,339
Area	0.54mm ²
Power	52 mW
ADC power (ADC14155)	967 mW

Measured Results

35

SFDR Comparison

36

MEMS Accelerometer

- Capacitance change ~10 fF/g
- Desired resolution ~10 mg for airbags and ESP
 Must resolve capacitance changes of ~100 aF
- Problem: Drift in parasitic bondwire capacitance

Sigma-Delta Interface

M. Lemkin and B. E. Boser, "A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics," IEEE J. Solid-State Circuits, vol. 34, pp. 456-468, April 1999.

Offset

- Drifts over time
- Indistinguishable from DC acceleration

39

Linear Feedback System with Two Inputs

 $y \cong x_1 \cdot \frac{1}{f} + x_2 \cdot \frac{1}{f \cdot a}$

Spring Constant Modulation

 The output due to C_{off} can be modulated to higher frequencies by modulating k

Spring softening effect

Can be used to modulate spring constant

Time-Multiplexed Feedback

Phase 1

- □ Spring constant modulation
- Phase 2
 - □ Sigma-delta force-balancing

Simulated Output Spectrum

Currently working on IC prototype

The Future?

Organic Semiconductors

- Mechanically flexible
- Suitable for solution processing
 - □ Cheap to cover large areas
 - Make disposable devices

Organic Transistors

[Klauk]

47

Displays (1)

Sony's 1,000,000:1 contrast ratio 27-inch OLED HDTV

Displays (2)

49

Sensor Applications

Jelly Fish Autonomous Node

http://muri.mse.vt.edu/

Organic Circuit Design Challenges

- Vds = -10VPoor mobility 1.00E-07 Age degradation 1.00E-08 100 sec 1.00E-09 Bias stress effects **(Y** spi 1.00E-10 **Device-to-device variations** 1.00E-11 **Dielectric leakage** 1.00E-12 20 30 40 50 Vgs(V)
- To date, very little work on <u>analog</u> circuits using organic transistors

Work in Progress: ADC using OTFTs

 Leverage experience from Si-CMOS to create a robust OTFTdesign

Summary

- Mixed-signal IC design is no longer business as usual
 Expect less return from pure "scaling" of decade-old circuits
 Time to become creative
- Many opportunities for innovation fall into the "cracks" between traditional boundaries of analog & digital, circuit & algorithm, mechanical & electrical partitioning
- Trend toward "More than Moore" will likely bring diversification of device technologies
 - MEMS/NEMS, large area device technologies, novel sensor devices, …

Sponsors

