High-Precision Low-Voltage Low-Power Analog-to-Digital Conversion

Hyunsik Park Feb. 12, 2009

Center for Integrated Systems Stanford University

Outline

- Introduction
- Proposed ADC architecture
- Implementation
- Experimental results
- Conclusion

Toward Lower Supply Voltage

- Reduced voltage headroom: limited circuit topologies
- Reduced dynamic range: higher power for the same DR

Reduced Device Intrinsic Gain

- Difficult to build precision analog blocks
- System robustness becomes important

Research Objectives

- Goal: Explore novel architectures and circuits for realizing high-precision, low-voltage, low-power CMOS ADCs
- Target application: Portable digital audio devices, sensor, instrumentation
- Target performance

Supply Voltage	0.7 V
Technology	CMOS 0.18- μm
Dynamic Range	> 95 dB
Signal Bandwidth	25 kHz
Power Dissipation	Minimize

Analog-to-Digital Conversion

- Sampling in time
- Quantization in amplitude

Nyquist-Rate ADC vs. Oversampling ADC

 $f_{S}/2$

$\Sigma\Delta \text{ Oversampling ADC}$

Filtering and feedback → Noise shaping

$\Sigma\Delta$ Oversampling ADC: Higher Order

Quantization

Single-bit quantization

- (+) Inherent DAC linearity
- (+) Relaxed comparator design constraints (power, loading, offset, complexity, ...)

(-) Increased integrator swings

Multi-bit quantization

- (+) Reduced integrator swings
- (+) Higher performance without order or OSR increase
- (-) Feedback DAC linearity issues (-) Higher performance comparator needed

Outline

- Introduction
- Proposed ADC architecture
- Implementation
- Experimental results
- Conclusion

Conventional $\Sigma\Delta$ Modulator

- Integrator swings depend on input

Input Feedforward $\Sigma\Delta$ Modulator*

- Input independent integrator swings
- Analog summation and timing overhead issues

* K. Nam, et al., CICC 2004

Oversampling ADC with Multi-bit Quantization

- Reduced integrator swings
- Higher power dissipation

Multi-bit Quantization: Idling Comparators

Multi-bit Quantizer Output (4-bit, OSR=100)

• Comparator redundancy

Tracking Multi-bit Quantizer*

- Multi-bit quantizer with a few comparators
- Tracking difficulty
- Comparator offset mismatch problem

```
* L. Dorrer, et al., ISSCC 2005
```

Low-Voltage Low-Power Architecture

Tracking Difficulty (1 of 2)

- OSR and number of bits trade-off
 - 4-bit quantization requires minimum OSR of 26
- Quantization error degrades tracking operation

Tracking Difficulty (2 of 2)

Modulator coefficient vs. peak SNDR

 $a_1: 1^{st}$ integrator gain(-1 dB, 24.5 kHz input sinusoid) $a_2: 2^{nd}$ integrator gain $b_1: 1^{st}$ integrator output feedforward gain

Integrator gain scaling helps tracking operation

19

Comparator Offset Mismatch

*| 0.4• Δ | offset mismatch

- Offset mismatch increases harmonics and noise floor
- Degraded tracking operation

Comparator Offset Mismatch: Tracking

Single Comparator Tracking Multi-bit Quantizer

• Timing overhead worse with input feedforward

Delayed Input Feedforward

Proposed $\Sigma\Delta$ **Modulator Architecture**

Integrator Swing Comparison*

- FF (Feedforward), DFB (Distributed Feedback)
- Multi-bit quantization
 input swing reduction
- Input feedforward → output swing reduction

* 24.5 kHz input sinusoid, OSR=100, V_{ref}=0.7V

25

System Robustness: Amplifier Gain Nonlinearity *

* −1 dB, 8 kHz input sinusoid (V_{ref}=0.7V)

Flicker Noise Reduction

• Chopper stabilization

Outline

- Introduction
- Proposed ADC architecture
- Implementation
- Experimental results
- Conclusion

Modulator Architecture*

*CMOS 0.18 μ m, L=0.18 μ m, W=100 μ m, V_{ov}=0.2V

Limited switch input range at low supply voltage

Low-Voltage Switch: Local Boosting

• Used to process DC signals

Low-Voltage Switch: Local Bootstrapping*

• Used to process dynamic signals with high-precision

* M. Dessouky, JSSC 2001 32

Input Sampling Network Design*

-113 dB THD with 18pF input sampling capacitor (C_S)
 @ 0.7-V supply

First Integrator Op Amp

Op Amp Power Reduction

- Incomplete but linear settling op amp → low power
- In implementation, n ~ 3.8

Chopper Stabilization Circuit

Analog Summation and Quantizer

Comparator Preamps

*S₁, S₂: Bootstrapped NMOS Switch

When cascaded,

DC Gain	6.8	BW _{open-loop 3dB}	174 MHz
Power	149 μ W	BW _{closed-loop} unity	140 MHz
3- σ V _{os}	19 mV	Phase Margin	58 Degree

Comparator Latch*

Average Power	~14 μ W	
t _{regen} @ 5 mV _{pp} input	~2.1 nsec	
3- σ V _{os}	23 mV	

*S. Limotyrakis, ISSCC 2004

Outline

- Introduction
- Proposed ADC architecture
- Implementation
- Experimental results
- Conclusion

Prototype Chip Photograph

Measured SNDR (1 of 2)

• 1 kHz input sinusoid

Measured SNDR (2 of 2)

• 8 kHz input sinusoid

Measured Output Spectrum (1 of 2)

- -5 dB, 1 kHz input sinusoid
- DWA provides required linearity

Measured Output Spectrum (2 of 2)

- -8 dB, 8 kHz input sinusoid
- Chopper stabilization effectively removes flicker noise

Performance Summary

Supply Voltage	0.7 V
Sampling Rate	5 MHz
References	0 V, 0.7 V
Signal Bandwidth	25 kHz
Dynamic Range	100 dB
Peak SNR	100 dB
Peak SNDR	95 dB
Power: Analog	680 μW
Digital	190 μW
Area (excluding decoupling capacitors, pads & output drivers)	2.16 mm ²
Technology	0.18-μm CMOS

Comparison

	This Work	G. Ahn, et al., ISSCC 05	K. Poon, et al., ISSCC 06	M. Kim, et al., VLSI 06
Power Supply (V)	0.7	0.6	0.5	0.9
Signal Bandwidth (kHz)	25	24	25	24
Clock Frequency (MHz)	5	3.072	3.2	6.144
OSR	100	64	64	128
Total Power (μW)	870 (Analog : 680)	1000	300	1500
Input Range (Vpp)	1.4	0.8	1	1.1
Dynamic Range (dB)	100	78	N/A	92
Peak SNR (dB)	100	77	76	91
Peak SNDR (dB)	95	77	74	89
Active Die Area (mm ²)	1.8 x 1.2	1.8 x 1.6	0.6	1.6 x 0.9
Technology	0.18 μ <mark>m CMOS</mark>	0.35μm CMOS Low V _{th}	0.18μm CMOS Triple Well	0.13μm CMOS
Туре	Switched Cap	Switched Cap	Continuous	Switched Cap
Order	2	2 - 2	3	3
Quantization	Multi-bit (18 levels)	1.5-bit	1-bit	1.5-bit

Outline

- Introduction
- Proposed ADC architecture
- Implementation
- Experimental results
- Conclusion

Conclusion

- Low-voltage strategies
 - Input feedforward + Multi-bit quantization
 - Locally boosted or bootstrapped switches
- Low-power strategies
 - Tracking multi-bit quantization
 - Delayed input feedforward
 - Incomplete but linear op amp settling
- High-precision strategies
 - Input feedforward
 - Single comparator multi-bit quantization scheme
 - Chopper stabilization
- Analog-to-digital interface design challenges imposed by technology scaling can be overcome by architecture level innovation and circuit level solutions