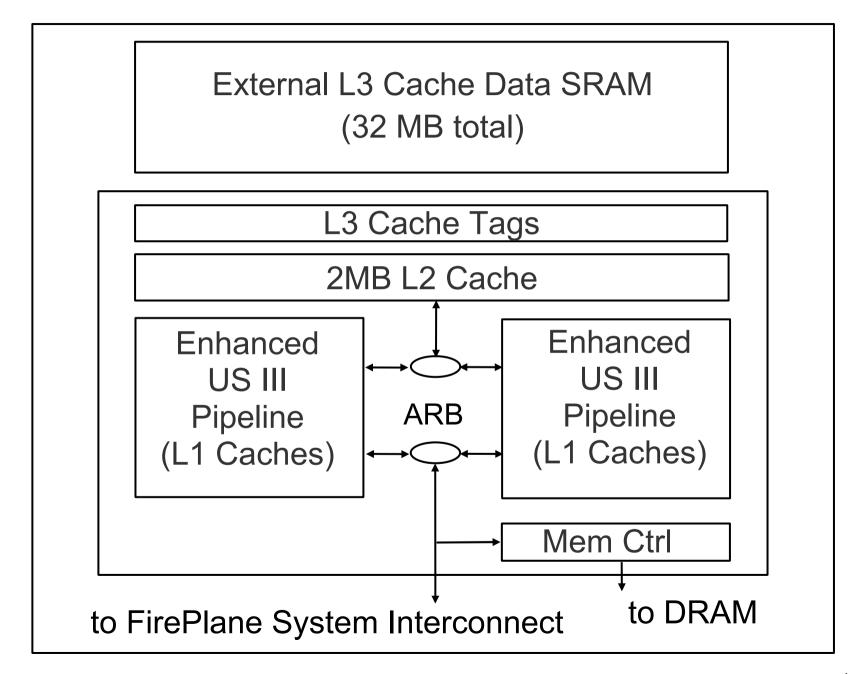
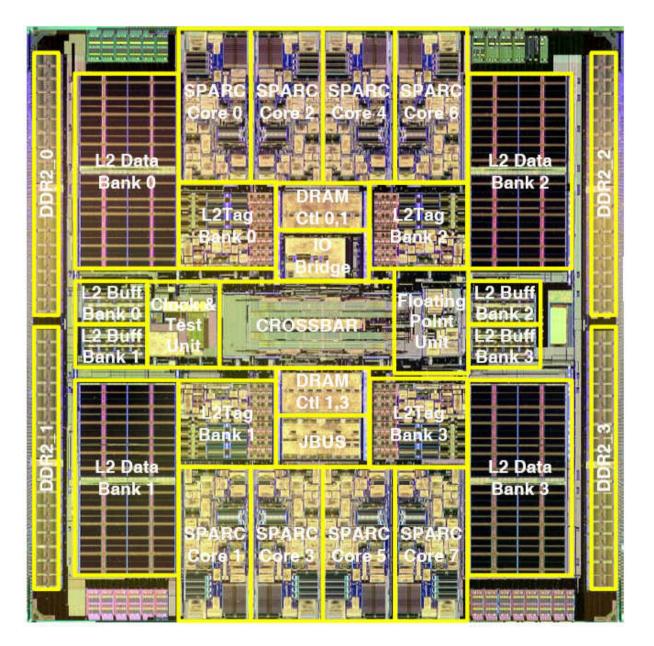
Implementation and Productization of a 4th Generation 1.8GHz Dual-Core SPARC V9 Microprocessor

Anand Dixit, Jason Hart, Swee Yew Choe, Lik Cheng, Chipai Chou, Kenneth Ho, Jesse Hsu, Kyung Lee, John Wu

Sun Microsystems, Sunnyvale, CA, USA


Overview

- Architecture and Functionality Enhancements
- Physical Implementation Scope
- Library and Design Structure
- Power Management
- Fullchip Integration and Floorplan
- Clocking Design and Analysis
- IO Modification
- Memory Design Changes

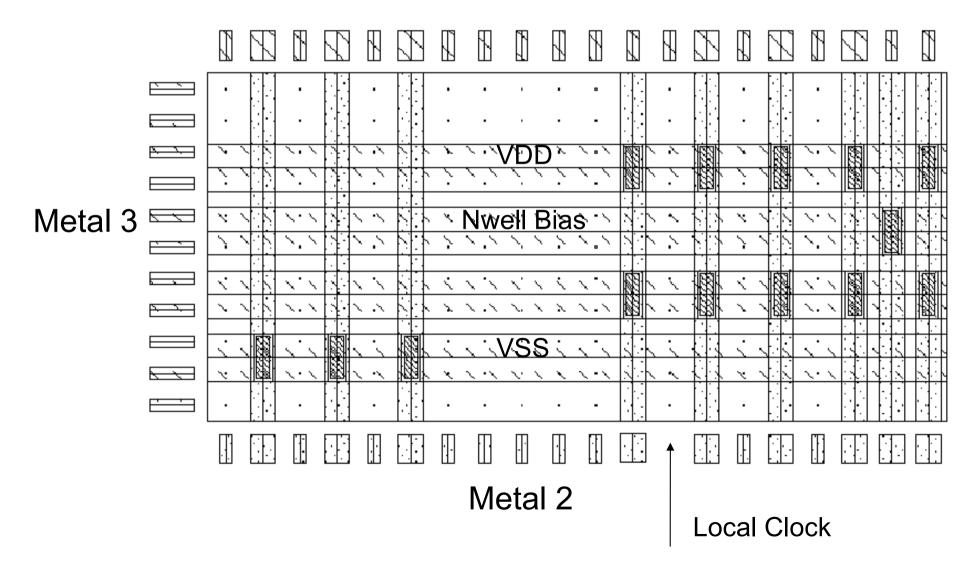

New Architecture Features

- Dual 3rd Generation Enhanced Cores
- Doubled Instruction cache size
- Shared on-chip 2MB Level-2 cache
- Shared external 32MB Level-3 cache
- On-chip Level-3 cache tags
- Optimized System Interface
- Optimized Memory Interface

Memory Hierarchy of Processor

Comparison with Niagara

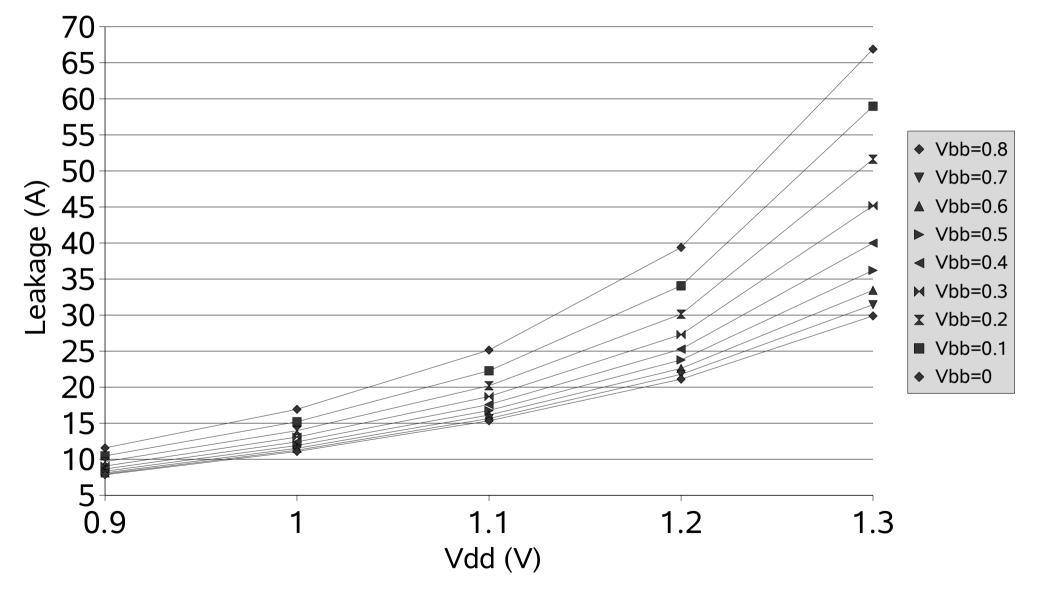
Physical Implementation

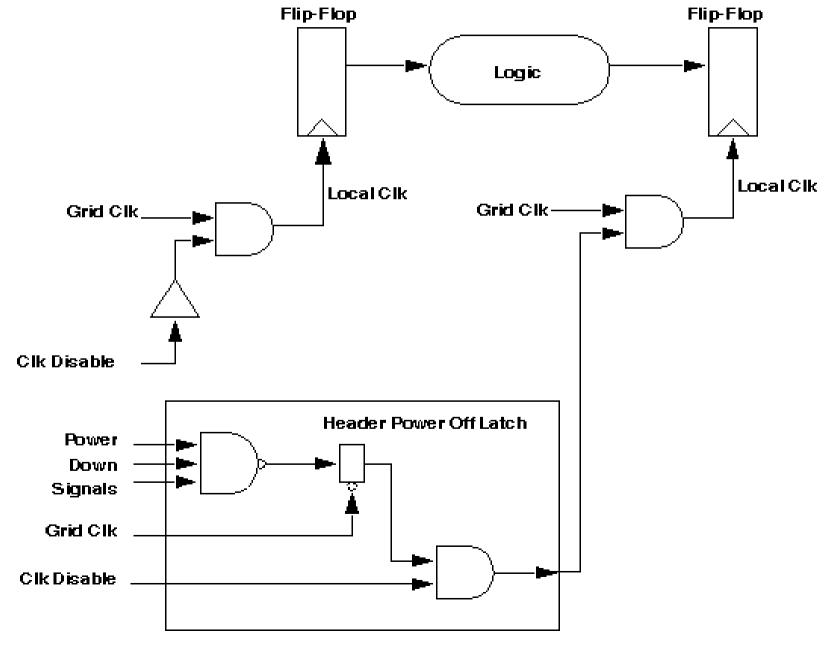

- Use TI's 90nm dual-Vt, dual-gate-oxide technology with 9 layers of low-k dielectric metal
- Increase core frequency beyond shrink factor
- Aggressively manage leakage and power
- Maximize reliability and reduce process defects
- Facilitate rapid block composition
- Improve clocking and reduce skew
- Required 100% recomposition of all blocks

Library Structure and Usage

- Single data and control library for simplicity
- Library cells extensively used for custom design
- Consistent library characterization
- Built in signal shielding to manage noise
- Local clocks and nwell bias accounted for in template
- Global methodology for substrate and nwell bias control
- Cell optimization to maximize speed and reduce power

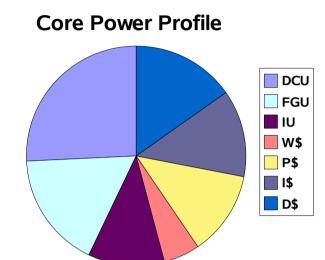
Library Metal Structure

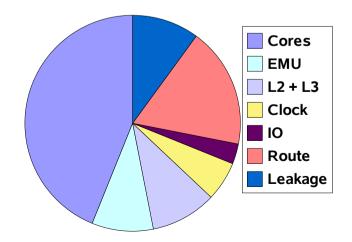

Metal 4


Power and Leakage Management

- Use gated clocks to dynamically shut off blocks
- Replace high-speed staticized dynamic flipflops with low power master-slave flip-flops
- Optimize drivers and gates in non-timing critical paths
- Minimize low-Vt transistors to less than 5%
- Modulate body bias to reduce leakage
- Global and local decoupling capacitor insertion resulting in 450nF total chip capacitance

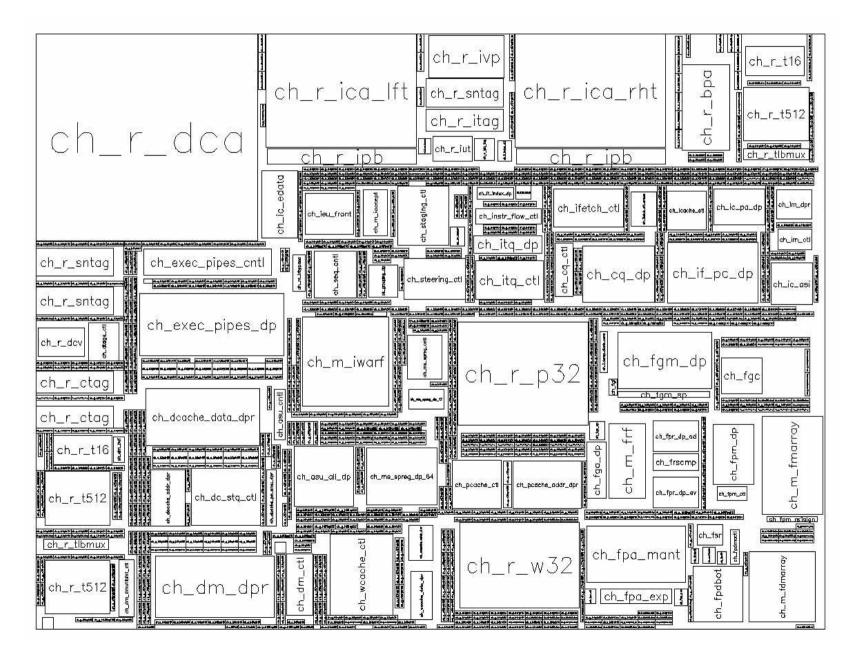
Leakage vs Vdd with Different Body Bias


Flip-flop and Clock Model for Power Down


Sun Microsystems me.

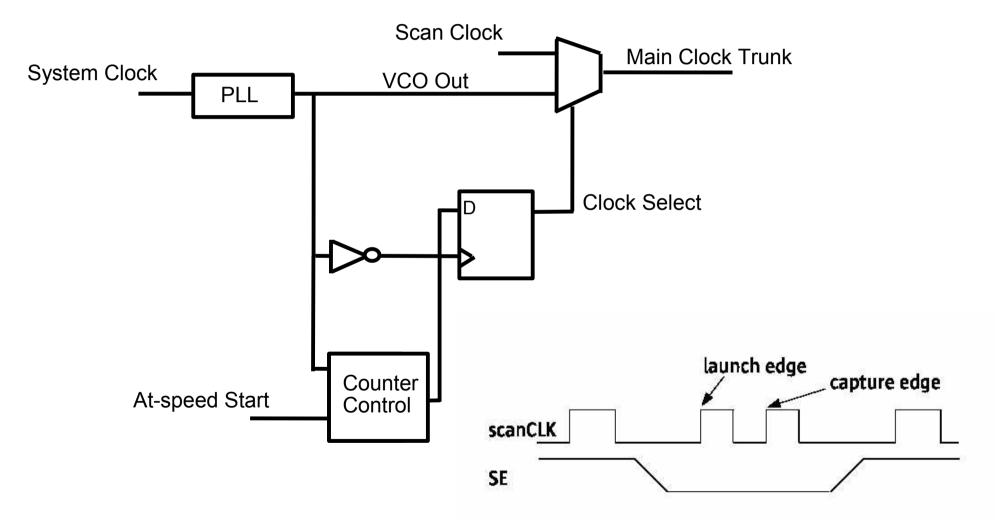
Chip Power

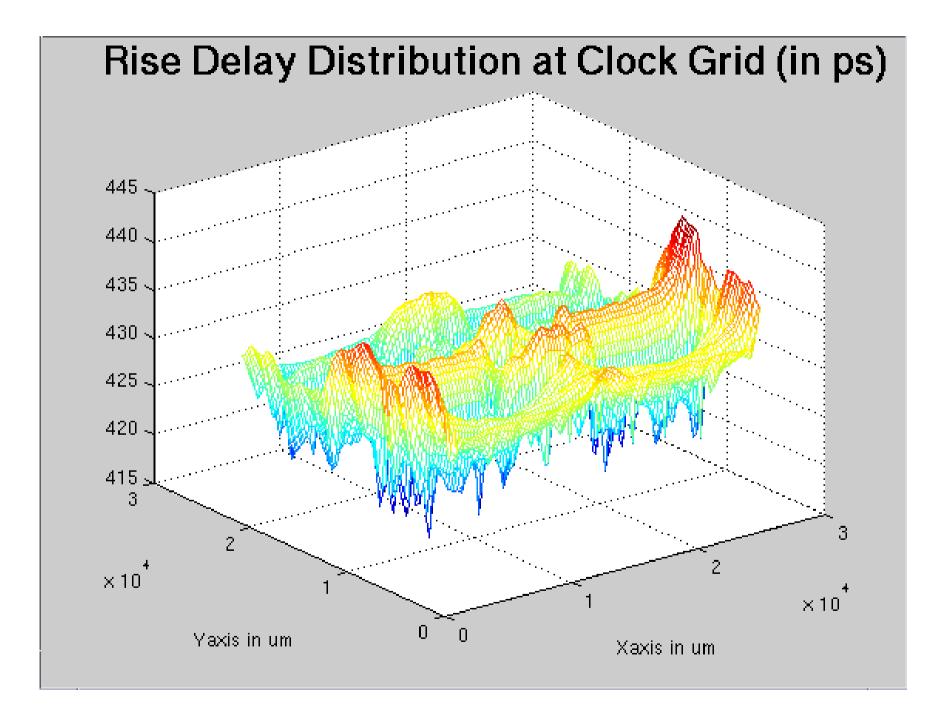
- 90W @ 1.8GHz @ 1.1v
- >5W reduction using power down feature
- Core (2x): 44%
- EMU: 9%
- L2 + L3: 10%
- Global Clock: 6%
- CPU Route: 18%
- IO: 3%
- Leakage: 10%


Fullchip Power Profile

Fullchip Integration

- Use fully shielded interconnect to eliminate capacitive and inductive noise
- Pre-insert repeaters and decoupling capacitors
- Shields inserted last, allowing better resource utilization for vias and jogs
- Extensive use of area pins for better timing and reduced congestion
- Block level pins matched to integration metal structure


Core Floorplan

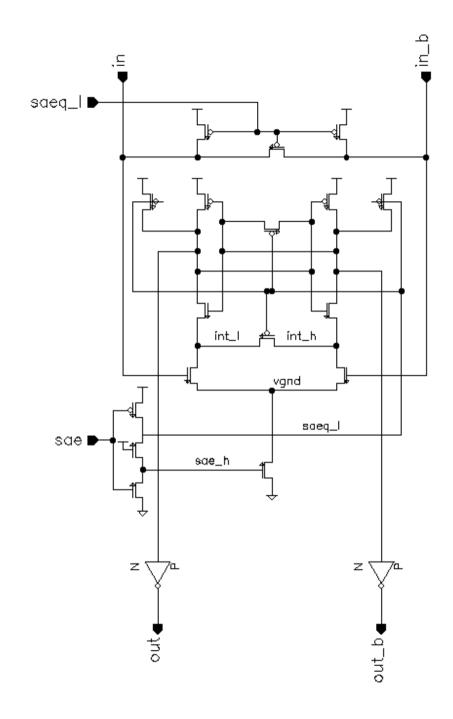


Clock Generation and Distribution

- 16-stage buffer tree distributes clock from PLL to global grid
- Global M5/M6 grid reduces skew and simplifies clock distribution
- Local block clocks distributed in the data direction from rows of headers
- Built in clock disable for final header control
- PLL allows insertion of full speed clock in scan mode
- PLL mixes ½ speed cycles into normal operation for timing path debug

Clock Multiplexing for Timing Debug

IO Enhancements


- Extended input common-mode range of the receivers (0.5V to 1.4V)
- Pseudo-differential DTL receiver with shared voltage reference line
- Specified to resolve a minimum of 100mV of voltage differential
- Statistical modeling for the devices and mismatch terms
- Clean power for shielding obtained from off chip

Memory Design

- Switched from self-timed to frequency-dependent
- First half of cycle for read and write access
- Second half of cycle for bitline sensing and precharge/equilibrate
- Control and address inputs are converted to halfcycle pulses using dynamic flip-flops
- Combine static, dynamic and self-resetting gates
- Self resetting gates used to lock signals together
- Register files use static sensing of single ended bitlines

Sense-Amp Design

- Common sense-amp design for all SRAM's
- Gate-fed differential sense amplifier replaces drain fed
- Reduced bitline load
- Isolated sense nodes

Preproductization Test Chip Activities

- Layout techniques for better yield
- Strained silicon
- Vmin shift in SRAMs
- Challenges in memory testing
- Aligning performance of various devices

Layout Techniques

- Significant interaction between layout and what is actually manufactured on silicon
- Meeting design rules is not enough
- Problem with standard mask design practice of packing things up in the smallest possible area
 - Mask designers are trained for this!
- Second pass at layouts
 - Pull geometries away; cleanup to reduce corners
 - Can be done with very little or no area hit
- Gives big improvement in expected yield

Strained silicon

- Industry wide initial hesitation with defects but universally adopted now
- Idrive gets about half the percentage increase in mobility
- NMOS: tensile (ex. Cap layer, STI, spacer) PMOS: compressive (ex. SiGe S/D, metal gate)
- Stress management for silicon
 - Strain and hence device performance will be function of device size and surrounding geometry
 - Statistical variability needs to be better understood
 - Defect density ?

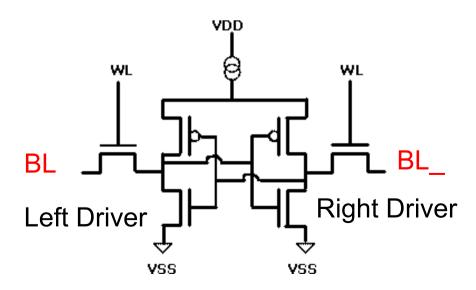
Vmin shift in SRAMs

Pre-Burnin

Core_Clk	(nS)		C	ore_Clk(MHz)
0				2298.851Mhz
0.460ns	anasaras			2175.649Mhz
0.484ns				2064.981Mhz
0.509ns				
0.534ns	haaraaraa	****.*		1874.302Mhz
0.558ns		*******		1701 585Mbz
0.583ns		********		1715.860Mhz
0.607ns		*********		1646.278Mhz
0.632ns		**************************************		1582.118Mhz
0.657ns		*************		1500 770Mbg
0.681ns		 .*********************************		1467.718Mhz
0.706ns	111111	******	281445	1416.505Mhz
0.731ns			4.4.4.4.4	1368.746Mhz
0.755ns		*****		1324.102Mhz
0.755ns	******	**********************	10.152	1282.278Mhz
		***************************************		1282.278Mhz
0.804ns		***************************************	* * * * *	1243.016Mhz
0.829ns				
0.854ns		*********************		1171.288Mhz
0.878ns		***************************************	anan	
0.903ns	(111	· ************************************		1107.387Mhz
0.928ns		. ********************		1077.981Mhz
0.952ns		*****		1050.097Mhz
		· * * * * * * * * * * * * * * * * * * *		1023.619Mhz
1.002ns	haranan	. *********************		998.443Mhz
1.026ns		. * * * * * * * * * * * * * * * * * * *		
1.051ns	an a	*****	anara.	951.633Mhz
1.075ns		**************************************		929.836Mhz
1.100ns		**************		909 016Mhz
1.125ns	haannaaraa	. *******************		889.107Mhz
1.149ns		********		870 052Mbz
1.174ns	*	************************************		851 796Mhz
	1	1	1	
		-		
	ò	3	6	
	ĭ	ĩ	ĭ	
	ō	ô	ō	
	v	v	ÿ	
		×	1	
	V avia	VddCore (V)		
		CPU Clock Period (nS)		
3	1 9718 -	CPU CLUCK PETIOD (NS)		

| DATE :04.13_13:15 |Composite Shmoo

Post-Burnin


ore_Clk	(nS)			Core_Clk(MHz)
0.484ns		********		2064.981Mh
0.509ns				1965.026Mh
0.534ns				1874.302Mh
0.558ns				1791.585Mh
0.583ns				1715.860Mh
0 657ns				1522.772Mh
0 681ms				
0 706ms				1416.505Mh
0.75570			10.011.0110.0	1324.102Mh
0.804ns				
0.0/0ns			*********	1107.387Mh
0.926ns			*********	1050.097Mh
0.952ns				1023.619Mh
1.002ns				
1.075ns				929.836Mhz
1.125ns				889.107Mhz
1.149ns		*		870.052Mhz
				2
	1	1		1
	ń	3 1		6 1 0
	1	3		1
		0		1
	0	U V		U V
	v	Y		V
	Kaxis - M	/ddCore (V)		
		PU Clock Per:	000000000000000000000000000000000000000	

Sun Microsystems Inc.

Composite Shmoo

Vmin shift in SRAMs

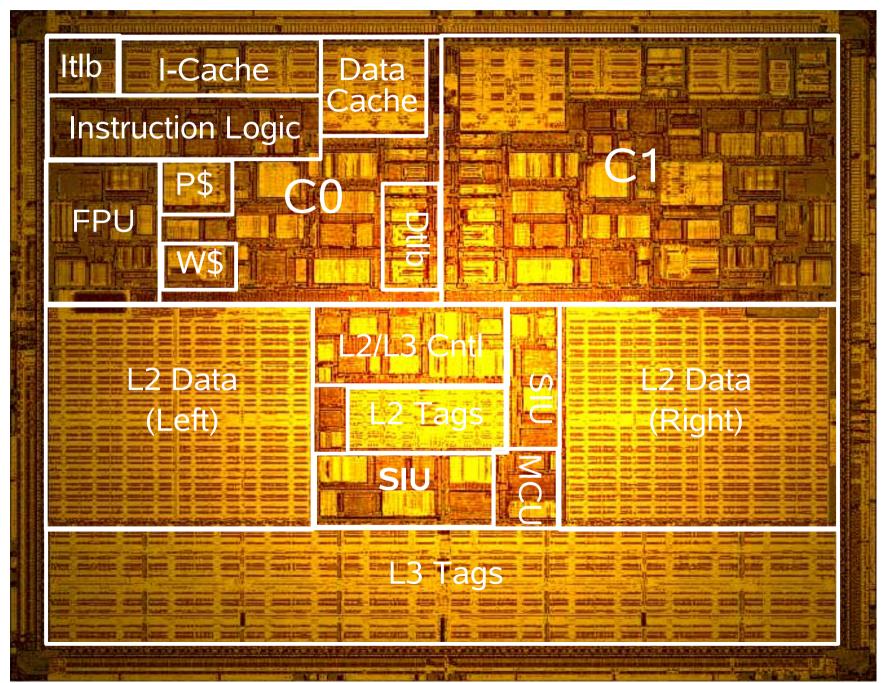
- Picoprobe data shows up to 150mV Vt mismatch in the driver devices while the standard deviation is 19mV. Adjacent devices differ by up to 8 sigma!!
- Additional bit fails explained by the NBTI shift of ~60-80mV
- Containment by better wafer sort/bit repair methodology
- More details in VLSI Symposium 2006

Challenges in memory test

- Logically ordered embedded memory testing no longer enough
 - Bits physically scrambled due to design and soft error issues
- Test order needs to take physical bit location into account
- New tests revealed failing bits physically adjacent to repaired bits
 - These were not stuck-at faults but marginal failures dependent on the sequence and speed in which bits around the physical defect were addressed
 - Important to have this capability as part of the DFT requirement

Aligning performance of devices

- Transistors in different flavors
 - Standard Vt, Low Vt, Thick oxide devices (and High Vt devices for future nodes)
- Important to understand how these devices would track as the process shifts
- Thick oxide devices left near the slow limit of the specification to be conservative
 - Caused high frequency cutoff due to the slow paths inside sense amplifier in input buffers


Performance and Statistics

	UltraSPARC III	UltraSPARCIV	UltraSPARCIV+
Supply Voltage	1.5V	1.35V	1.1V
Frequency	0.8GHz	1.2GHz	1.8GHz
Power	60W	102W	90W
Die Size	233mm ²	352mm ²	336mm ²
Transistor Count	23M	66M	295M
Data Cache	64KB	64KB (*2)	64KB (*2)
Instruction Cache	32KB	32KB (*2)	64KB (*2)
L2 Cache	8MB (off chip)	16MB (off chip)	2MB (on chip)
L3 Cache	NO	NO	32MB (off chip)
L3 Tag	NO	NO	YES (on chip)
Technology	150nm	130nm	90nm

Schmoo Plot of Processor

Cycle Time		Frequency
0.444ns		2250Mhz
0.455ns		2200Mhz
0.465ns	**	2152Mhz
0.475ns	****	
0.485ns	******	
0.495ns		
0.505ns		1980Mhz
0.515ns		1941Mhz
0.525ns	************	1904Mhz
0.535ns	*************	1868Mhz
0.545ns	****************	1833Mhz
0.556ns	*****N*********	1800Mhz
0.566ns	*************	1768Mhz
0.576ns	.******	1737Mhz
0.586ns	******	1707Mhz
	111111111111111111111111111111111111111	
	000000000011111111112	* = Passing
	012345678901234567890 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	N = Nominal Operating Point (1.8GHz @ 1.1V)
	Supply Voltage	Temperature = 105 °C

Micrograph of Processor Die

Implementation of a 4th Generation 1.8GHz Dual-Core SPARC V9 Microprocessor

Anand Dixit, Jason Hart, Swee Yew Choe, Lik Cheng, Chipai Chou, Kenneth Ho, Jesse Hsu, Kyung Lee, John Wu

Sun Microsystems, Sunnyvale, CA, USA