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High Speed Links

Increasing computation power and today’s 
networked society requires chip-to-chip I/O 
bandwidth to increase

Routers, Processor – Memory Interface

*2006 International Technology Roadmap for Semiconductors

ITRS Projections*
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Chip-to-Chip Electrical Interconnects

Electrical channel characteristics limit performance

Electrical Backplane Channel

*V. Stojanovic and M. Horowitz, “Modeling and Analysis of High-Speed Links," CICC, 2003.

Channel Responses*
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5Gb/s data 
at RX

with equalization 
(additional power & area)

Chip-to-Chip Electrical Interconnects

Sophisticated equalization circuitry required
Typical commercial electrical I/O xcvr

~20mW/Gb/s at 10Gb/s

5Gb/s data 
at TX
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Chip-to-Chip Optical Interconnects

Optical interconnects remove many channel limitations
Reduced complexity and power consumption
Potential for high information density with wavelength-division 
multiplexing (WDM)

negligible frequency dependent loss
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Optical Sources & Detectors

Sources

VCSEL
MQW Electroabsorption

Modulator

p-i-n Detector

Detector Integration
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CMOS Optical Link Issues

VCSEL bandwidth
Inherent device RC
Optical bandwidth requires high average current density

Modulator voltage swing limited by CMOS 
reliability constraints

Reduced gain/headroom in scaled technologies
Motivates use of integrating RX vs traditional TIA

Dealing with mismatch
Offset compensation (voltage & timing)

Power and area reduction
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90nm CMOS 16Gb/s 
Optical Transceiver Architecture

1. S. Palermo et al, “A 90nm CMOS 16Gb/s Transciever for Optical Interconnects," ISSCC, 2007.
2. J. Roth, S. Palermo et al, “1550nm Optical Interconnect Transceiver with Low Voltage Electroabsorption

Modulators Flip-Chip Bonded to 90nm CMOS," OFC, 2007.
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VCSEL Bandwidth vs Reliability

THavg IIBW −∝

Mean Time to Failure 
(MTTF) is inversely 
proportional to current 
density squared

[2]

Steep trade-off between 
bandwidth and reliability
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1. D. Bossert et al, "Production of high-speed oxide confined VCSEL arrays for datacom applications," Proceedings of SPIE, 2002.
2. M. Teitelbaum and K. Goossen, "Reliability of Direct Mesa Flip-Chip Bonded VCSEL’s," LEOS, 2004.
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VCSEL TX Equalization

( ) des
TT

ls YPPPH 1−
=

TX Current
h(n)=I-1(-1) + I0(0) + I1(1) + I2(2)

Received Optical Power
y(n)

Channel Pulse Response
p(n)

Measured pulse responses 
at 17Gb/s w/ Iavg=6.7mA

4-tap FIR filter – 1 precursor, 1 main, and 2 postcursor is 
a good compromise between power and performance
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Multiplexing FIR Circuit 
Implementation

S. Palermo and M. Horowitz, “High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," ESSCIRC, 2006.
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Tap Mux & Output Stage

5:1 multiplexing predriver uses 5 pairs of 
complementary clock phases spaced by a bit time

Tunable delay predriver compensates for static phase 
offsets and duty cycle error
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VCSEL TX Optical Testing

Wirebonded
10Gb/s VCSEL
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VCSEL 16Gb/s Optical Eye Diagrams

Iavg=6.2mA, ER=3dB

w/ Equalization

IDC = 4.37mA
IMOD = 3.66mA

IDC = 3.48mA
I−1 = -0.70mA
I0 = 4.36mA
I1 = -0.19mA
I2 = 0.19mA

Equalization increases 
vertical eye opening

45% at 16Gb/s

No Equalization
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External Modulation with MQWM

Absorption edge shifts with changing bias voltage 
due to the “quantum-confined Stark effect” and 
modulation occurs 

Maximizing voltage swing allows for good contrast 
ratio over a wide wavelength range

QWAFEM Modulator*

*N. Helman et al, “Misalignment-Tolerant Surface-Normal Low-Voltage Modulator for Optical Interconnects," JSTQE, 2005.
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High-Voltage Output Stage Issues

☺ Cascode driver has potential for 2x Vdd drive at high speed

Static-biased cascode suffers from Vds stress during transients

*T. Woodward et al, “Modulator-Driver Circuits for Optoelectronic VLSI," IEEE Photonics Technology Letters, 1997.

Cascode Driver*

Vds stress on 
MN2 > 45% Vdd



19

Pulsed-Cascode Output Stage

Preserves two-transistor stack configuration for maximum speed

Cascode transistors’ gates pulsed during transitions to prevent 
Vds overstress

S. Palermo and M. Horowitz, “High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," ESSCIRC, 2006.
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Output Stage Waveforms



21

Output Stage Waveforms

Vds stress 
< 10% Vdd
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Modulator TX with 
Level-Shifting Multiplexer

Level-shifter combined with multiplexer
Active inductive shunt peaking compensates multiplexer self-
loading (reduces transition times by 37%)
Slightly lower fan-out ratio in “high” signal path to compensate for 
level-shifting delay
Delay Tracking

“High” path inverter nMOS in separate p-well
Metal fringe coupling capacitors perform skew compensation
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MQWM TX Testing

3R

R

sclk

sclk_b

cclk

Vcalib to
scope

x1 x10

Vddsamp

x10 x50

Sampler

Mbias

MQWM

Modulator
TX

Electrical sampler at modulator transmitter output
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Modulator Driver 
Electrical Eye Diagram

16Gb/s data subsampled at modulator driver output node
Experimental full optical link operation at 1.8Gb/s*

Limited by excessively high contact resistance 
*J. Roth, S. Palermo et al, “An optical interconnect transceiver at 1550nm using low voltage electroabsorption modulators 
directly integrated to CMOS," JLT, 2007.
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Optical RX Scaling Issues

☺ Traditionally, TIA has 
high RT and low Rin
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Integrating Receiver Block Diagram

A. Emami-Neyestanak et al, “A 1.6Gb/s, 3mW CMOS receiver for optical communication," VLSI, 2002.
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Demultiplexing Receiver

Demultiplexing with multiple clock phases allows 
higher data rate

Data Rate = #Clock Phases x Clock Frequency
Gives sense-amp time to resolve data
Allows continuous data resolution
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Clocked Sense Amplifier

Offset cancelled with digitally adjustable PMOS capacitors
Step=2.3mV, Range=±70mV

Kickback charge can corrupt adjacent samples
Need high common-mode input for adequate speed
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1V Modified Integrating Receiver

Differential Buffer
☺ Fixes sense-amp common-mode input for improved 

speed and offset performance
☺ Reduces kickback charge

Cost of extra power and noise
Input Range = 0.6 – 1.1V
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Receiver Sensitivity Analysis

mV
C

kT

samp
samp 92.02

==σ
mVbuffer 03.1=σ mVSA 45.0=σ

Residual SA Offset = 1.15mV

Max ΔVin(ΔIAVG) = 0.6mV

16Gb/sat  65.0  NoiseJitter  Clock mVv
T b

b

j
clk ≈Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

σ
σ

mVclkSAbuffersamptot 59.1  NoiseInput  Total 2222 =+++= σσσσσ

ΔVb for BER = 10-10 = 6.4σtot + Offset = 11.9mV

( )
b

inpdb
avg T

CCV
P

ρ
+Δ

=

Gb/s Pavg
(dBm)

10 -9.8

16 -7.8



32

Outline

Introduction

Optical transmitters

Optical receiver

Clock and data recovery

Optical link system performance

Conclusion



33

Conventional Dual-Loop CDR

☺ 2 degrees of freedom 
to filter VCO noise & 
erroneous phase 
updates

Input demultiplexing
receiver requires 
multiple phase muxes
& interpolators
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Dual-Loop CDR 
w/ Feedback Interpolation

Extends [Larsson:99] 
to input demultiplexing
receiver

Only one phase 
mux/interpolator pair

Filtering of interpolator 
switching

Path from VCO to 
samplers

Minimal Delay
Static – allows offset 
cancellation

5:
1 

M
U

X
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Dual-Loop CDR 
w/ Feedback Interpolation

5:
1 

M
U

X

Frequency loop 
bandwidth = 40MHz 
to minimize VCO 
noise

Phase loop 
bandwidth < 4MHz 
to minimize input 
noise
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Baud-Rate Phase Detection

For certain 4-bit patterns 
compare Vin(n) with Vin(n-2) 
[Emami:04]

☺ No “quadrature” phases 
required
Reduces net update rate to 
18.75%Valid 4-Bit Patterns

0011, 1100, 0010, 0100, 1011, 1101
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Clock Recovery Performance

RX clock frequency = 3.2GHz (16Gb/s)
Jitter increases only marginally when CDR activated

1.74psrms, 12.9pspp » » 1.90psrms, 15.1pspp

Sufficient filtering of input noise

CDR Disabled CDR Activated
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Phase Correction Circuitry

Static phase offset corrected with tunable delay 
clock buffers

Digitally-adjustable capacitive loads
Phase range at 16Gb/s is ±12% UI

Phase Correction PerformanceTunable Delay Clock Buffers
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Optical Transceiver Testing

RX Input NodeTransmitted Bits
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Receiver Sensitivity

Test Conditions
8B/10B data patterns 
(variance of 6 bits)
Long runlength data 
(variance of 10 bits)

BER < 10-10



42

Transceiver Power Consumption

Power at 16Gb/s = 129mW (8.1mW/Gb/s)
Power scales with data rate

Mostly CMOS circuitry
Integrating RX sensitivity improves at lower data rates

Power Breakdown at 16Gb/s
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Transceiver Performance Summary

Technology 90nm CMOS

Supply Voltages Vdd=1V, LVdd=2.8V, 
PDBias=2.5V

Data Rate 5 - 16Gb/s

Extinction Ratio 3dB

Average Optical Launch Power 3.1dBm

RX Input Capacitance 440fF

RX Sensitivity (BER=10-10)
10Gb/s
16Gb/s

12.5mV (-9.6dBm)
20.2mV (-5.4dBm)

Area 0.105mm2

Power at 16Gb/s 129mW (8.1mW/Gb/s)
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Optical vs Electrical XCVR
Performance Comparisons

Compares favorably due to simple equalization circuitry
Should scale well

Better VCSEL technology
Lower capacitance photodetectors
Higher data rates ⇒ More equalization for electrical channels
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Conclusion

Optical interconnects provide a path to reducing 
the I/O bandwidth problem

Proposed optical interconnect architecture is 
suitable for large scale integration in 
current/future CMOS technologies

VCSEL TX equalizer allows low current operation
Reliable MQWM TX capable of 2*Vdd voltage drive
Low voltage integrating receiver
Baud-rate clock recovery
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Equalization Performance

Maximum data rate vs average current
Min 80% eye opening & <40% overshoot

Equalization allows lower average current for a given data rate

Linear equalizer limited by VCSEL nonlinearity

ER=3dB ER=6dB

14Gb/s
35% less Iavg ⇒

138% increase in MTTF
4Tap Eq

No Eq

4Tap Eq

No Eq
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13Gb/s Power w/ different tap #
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VCSEL TX Power vs Data Rate & 
Tap #

FCB Channel Wirebond Channel
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Modulator Driver 
Reliability Simulations

Transient with random data

Corner simulations show no output 
stage voltages exceed 11% of 
nominal Vdd

Monte Carlo simulations show tight 
distributions (σ < 15mV)

Maximum nMOS Voltages Maximum pMOS Voltages

MN1 VDS Distribution
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Coupling Capacitor Skew 
Compensation Performance
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