A Low-Power 60GHz Transceiver with Integrated Baseband Circuitry

Cristian Marcu, Debopriyo Chowdhury, Chintan Thakkar, Ling-Kai Kong, Maryam Tabesh, Jung-Dong Park, Yanjie Wang, Bagher Afshar, Abhinav Gupta, Amin Arbabian, Simone Gambini, Reza Zamani, Ali M. Niknejad, Elad Alon

Berkeley Wireless Research Center, UC Berkeley

The 60GHz Band

- World-wide license-free 60GHz spectrum allows Gbps communication
- Applications range from Last-Mile to Last-Inch
- Generally limited to LOS due to power constraints
- Security due to absorption by O₂ and building materials

Why CMOS for 60GHz?

- Energy efficiency and cost are key for mobile applications
- Leverage low-power digital and cost advantage of CMOS
- CMOS allows integration of RF and baseband on single chip as well BIST capabilities

60GHz in Mobile Applications

- Significant progress in mm-wave building blocks
- Transceivers for high-def. video in development
 - WirelessHD demo at CES
 - Wall-powered, multi-Watt
- Improved energy-efficiency is key for multi-gigabit mobile communication
 - Many open questions remain
 - Multiple efforts from industry and academia

Recent 60GHz Transceiver Efforts

Ref.	Tech	Pwr (mW) TX/RX	PA o/p /Vdd	Integration	Data Rate
Pinel ISSCC '08	90nm CMOS	173/189	+8.4dBm /1.8V	Baseband integration not clear	7Gbps (QPSK) 15Gbps (16- QAM)
Wang ISSCC '07	130nm CMOS	-/-	-2dBm/	No digital	4Gbps (BPSK)
Floyd ISSCC '06	130nm SiGe	801/527	+17dBm /4V	No digital / 2 RF chip module	0.63Gbps (OFDM/QPSK)
Tanomura ISSCC '08	90nm CMOS	133/206	+8.3dBm /0.7V	No digital, VCO, or PLL / separate TX/RX	2.6Gbps (QPSK)
Vonigescu CICC '08	65nm CMOS	223/151	+2.4dBm /1.2V	No digital, VCO, or PLL	3.5Gbps (BPSK)

60GHz Transceiver Overview

Ref: C. Marcu et al, ISSCC 2009.

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- Measurement
 Summary

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- MeasurementSummary

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- Measurement
 Summary

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- Measurement
 Summary

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- MeasurementSummary

Target: 5GS/s, 3-bit combined DAC/Mixer

Bias current set by swing needed at output

Ref: S. Luschas et al, JSSCC 2004.

DAC and Up-Conversion Mixer

 Current mode summation of I and Q mixers challenging at 60GHz

Power Amplifier

- Coplanar stripline and transformer based input matching network to present low impedance to mixer
- Optimized driver stages for higher power gain
- Output transformer adds inherent ESD protection
- Successfully tested protection using MM up to 400V

Ref: D. Chowdhury et al, ISSCC 2008.

Transmitter Measurement

Peak Pout=11dBm with 14.6% PA efficiency

Transmit Eye Diagram

Measured I-channel transmit eye diagram at 5GS/s

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- Measurement
 Summary

Receiver

- Direct conversion receiver
 - Hybrid for quadrature separation in the signal path
 - ESD protected LNA

Ref: B. Afshar et al, ISSCC 2008.

Receiver

- Direct conversion receiver
 - Hybrid for quadrature separation in the signal path
 - ESD protected LNA

Ref: B. Afshar et al, ISSCC 2008.

Original LNA Design

- Two stage cascode LNA
 - Unconditionally stable at 60GHz
 - High maximum available gain and isolation
- CPW transmission lines with Z0 = 50.8Ω
- Power consumption from 1.2V supply: 17mW

LNA ESD Protection

- ESD desirable to enable packaging
 - At 60GHz ESD diodes too lossy
- Proposed ESD protection circuit :
 - Triple-shunt stub to GND merged into input matching circuit
 - Simulated insertion loss <0.7 dB
 - Successfully tested protection using MM up to 400V

Size-reduced Hybrid with C Loading

- Size = 355um×254um (80% area reduction)
- Simulated insertion loss ≈ 2dB
- Simulated in-band gain mismatch < 0.5dB, phase mismatch < 4°

Downconversion Mixer

- Single balanced mixer
- On-chip tuned balun
- Balun center tap provides convenient gate bias point
- Gain enhancement tuning network between g_m stage and switches
- Power consumption from 1.2V supply: 6.5mW

Base-Band Design

- Traditional ADC/DSP inefficient at GHz bandwidths
 100's of mW for DAC, ADC, ...
- High-speed electrical link-based approach
 - Mixed-signal phase rotator and 5-tap complex DFE

Phase Rotator

Phase rotator: 4 digitally controlled VGAs

- Set gain by switching unit gm cells
- 4-bit gain control \rightarrow 16 unit cells/VGA

4-bit/Quadrant Phase Rotator

Improved

4-bit/Quadrant Phase Rotator

4-bit/Quadrant Phase Rotator

Decision Feedback Equalizer

- DFE to compensate for reflections
- FIR summation and weighting in analog domain
- Initial design: 5 taps (5 bits each)

Decision Feedback Equalizer

- 1st tap most challenging in mixed-signal DFE
- Resolve-subtract loop
 - < 200ps @ 5GS/s

- Solution: loop unrolling
- Resolve both options, then choose
- Moves critical loop into digital domain

Ref: K.K. Parhi, ISCAS 1990.

QPSK DFE

QPSK DFE

QPSK DFE

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- MeasurementSummary

- Fixed-N, charge pump based PLL
 - Loop BW ≈ 1 MHz
 - Total power: 26.3mW
- F_{REF} ≈ 117 MHz (crystal or MEMS reference feasible) 35

- Fixed-N, charge pump based PLL
 - Loop BW ≈ 1 MHz
 - Total power: 26.3mW
- $F_{REF} \approx 117 \text{ MHz}$ (crystal or MEMS reference feasible) ₃₆

- Push-push VCO \rightarrow no need for frequency doubler
- 30GHz Clapp based core
 - Careful with common-mode stability
- Low Vdd (0.7V) required for reliability

Pulsed-Latch Divider

- Pulsed-Latch can increase maximum frequency of static divider while increasing minimum frequency from DC
- Minimum frequency set by race-through delay
- Complicated design in 0.13µm due to speed limitations

Ref: J. Kim et al, VLSI 2005.

CML Pulsed Latch Divider Design

- Latch heavily loaded so output taken from 2nd buffer
- Tunable triode region PMOS load for tuning over PVT
- No inductors required \rightarrow reduced area
- Additional buffer, not shown, to isolate next stage loading

VCO/PLL Measurements

- VCO tuning range larger than expected
- Measured output power lower than expected by 10dBm
- Phase noise @ 10MHz offset: -112.08 dBc/Hz (FOM: -178.4dB)

Copyright 2000–2004 Agilent Technologies

Locked PLL Spectrum Measurement

- Large reference spurs likely due to loop filter reference supply, substrate injection, charge pump mismatch
- Ref: E. Temporiti et al, JSSC Sep. 2004.

Locked PLL Spectrum Measurement

- Large reference spurs likely due to loop filter reference supply, substrate injection, charge pump mismatch
- Ref: E. Temporiti et al, JSSC Sep. 2004.

60GHz LO Chain

- Total power: 50mW (not including VCO)
- Delivers -2.5dBm to each of the 4 mixers

- Transmitter Blocks
- Receiver Blocks
- Phase Locked Loop and LO Chain
- Measurement
 Summary

Die Photo

Test Set-Up

Data Transmission

Setup:	Loop-Back	Chip-to-Chip (wired)	Chip-to-Chip (wireless)
Highest Data Rate Achieved	7Gb/s	6Gb/s	4Gb/s over 1m distance

47

Sources of I/Q Mismatch

- Gain and phase mismatch in the hybrid
- Unbalanced routing of VGA outputs to phase rotator inputs

Sources of I/Q Mismatch

- Routing of LO and RF in up-conversion mixer quads
 - Symmetric routing practically impossible

Sources of I/Q Mismatch

 Unbalanced mixer loading due to 90° separation between LOI and LOQ

Packaged Transceiver Testing Underway

Ref: A. E. I. Lamminen et al, IEEE Trans. Antennas Propag. Sept. 2005.

Conclusion

- Designed an integrated 60GHz transceiver including RF, LO, PLL, and BB
 - 170mW in TX mode and 138mW in RX mode
 - Mixed-signal baseband processing can be very efficient
 - LO distribution can be expensive both in area and power
- Future directions
 - Closing the loops
 - Packaged testing

Acknowledgements

- BWRC faculty, staff, students, sponsors, and member companies
- NSF Infrastructure Grant No. 0403427
- Chip fabrication donated by ST Microelectronics
- DARPA
- C2S2 Program
- Cascade Microtech
- VTT