A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

Murat Demirkan*

Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

Motivation

- Consumers demand indoor wireless connectivity
- Current WLAN/WPAN solutions insufficient
 - 802.11a/g→ 54Mbps (WLAN)*
 - Bluetooth→ 3Mbps (WPAN)
- High data-rate applications:
 - Wireless USB (480Mbps)
 - Real time AV Streaming (HDTV), AV Conference

*w/o MIMO

Motivation Cont.'d

Shannon's Law: The theoretical maximum information rate of a channel in bits per second is $C = BW \cdot (1 + \log_2 SNR)$

UWB can provide very high data rates at low transmit power levels compared to narrowband

implement in low-cost CMOS
Power Amplifier not required

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

FCC Limits

FCC: UWB device has BW_{frac} >0.2 or BW>500MHz

$$BW_{frac} = rac{2(f_{H} - f_{L})}{f_{H} + f_{L}} = rac{BW}{f_{c}}$$

12 Peak power limit: 0 dBm EIRP within 50 MHz of f_c

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

UWB Antenna Modeling

- Narrowband Antennas are frequency independent (Z_{in}=Z_o, Gain)
- UWB radios operate in 3.1-10.6GHz ($Z_{in}(\omega)$, $H(\omega)$)
 - Need to simulate EIRP before fabrication
 - Need a circuit-level model to facilitate design
 - Simple lumped models are NOT adequate

Modeling UWB Antennas

Transceiver 2

Bilateral equivalent circuit model for the 2-antenna network.

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

Pulse Generation Methods

Up-Conversion:

ISSCC 2005 [lida et al.]

Filtering:

FIR Pulse Generator

DT-FIR Filter:

This work:

Frequency Synthesizer (PLL)

Charge Pump

- Single-ended design for simplicity
- Low-voltage cascode current mirrors
- M_{1a} and M_{2a} are switches
- M_{1b} and M_{2b} provide discharge path

Voltage Controlled Oscillator

- Single-loop inductor
- AMOS varactors for fine and coarse tuning
- Cross-coupled CMOS
 - -Sets bias for AMOS
 - -Reduces 1/f noise upconversion

Measured Phase Noise at 14.4GHz

Simulated and Measured Pulses

Measured EIRP

Performance Summary at 25°C

Technology	90nm CMOS	
Die Area	2.83mm ²	
Max. Pulse Rate	1.8Gpulses/s	
Max. Pulse Amplitude	220mVpp	
Modulation	BPSK+PPM	
VCO Range	12.3-15.7GHz	
Jitter (rms)	1.9ps	
Jitter (peak-to-peak)	15.1ps	
Supply Voltage	1.0V	
Power Dissipation		
Pulse Generator	129mW	
PLL	98mW	
Test-Mode Circuitry	143mW	
Total Transmitter Power	227mW	
Energy/Pulse	126pJ/pulse	

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design (with Stephen Bruss)
- Summary

Motivation

 How can we improve the tuning range of a conventional *LC* VCO without increasing phase noise and area significantly?

• Key observertion: Capacitor Q is low at high frequencies ($Q_c=1/\omega RC$) but inductor Q is high!

VCO1: Single-inductor LC VCO

- Built as reference for comparison
- Inductor
 - Single-turn
 - Uses both M8 & M9
 - Has high self resonant freq.
 - Flat L and Q vs. Frequency
- AMOS varactors
 - Fine tuning (Kvco=150MHz/V)
 - Coarse tuning (Binary weighted)

VCO2: LC VCO with one extra coil

- Coil L₂ mutually coupled to L₁
- When S₁ is OPEN
 - No Eddy Currents in L_2
 - Inductance is L_1
- When S₁ is CLOSED
 - Eddy Current flow in L_2
 - Inductance drops to $L_1 k_{12}^2 L_2$

VCO3: LC VCO with two extra coils

- Coils L₂ and L₃ are mutually coupled to L₁
- Switches S₁ and S₂ control currents in L₂ and L₃
- Four frequency bands

Resonator Layout

- Extra coils add small area
 - L₂ & L₃ biased independently
 - Set V_{b1} & V_{b2} to opposite polarity of V_{g1} & V_{g2}
 - Improves (Q x TR) by 1.6
- Switch size critical (R_{on}, C_{off})

Measured Phase Noise at 13GHz

Phase Noise at 1MHz offset

40

Performance Summary at 25°C

	VCO1	VCO2	VCO3
Process	90nm CMOS	90nm CMOS	90nm CMOS
Power Supply	1.2V	1.2V	1.2V
Center Frequency	13.7GHz	12.4GHz	11.8GHz
Tuning Range	26.6%	36.3%	61.9%
Power	2.81mW	5.65mW	7.7mW

Performance Comparison

Performance Comparison

Die Micrograph

1.1mm

Outline

- Motivation (Why UWB?)
- FCC Emission Limits
- Antenna Characterization
- UWB Transmitter Design
- Wide Tuning-Range VCO Design
- Summary

Summary

- Modeling of UWB Antennas in RF Circuit Simulators
- A new pulse-based UWB transmitter architecture
- A Method to improve to tuning ranges of conventional *LC* VCOs using switched coupled-inductors

Acknowledgements

- Advisor: Prof. Richard R. Spencer
- Professors P.J. Hurst, A. Knoesen, B. Kolner,
 S. H. Lewis, A. H. Pham and D. Yankelevich for their generous help
- Stephen P. Bruss (VCO Project)
- Dan Oprica and the IEEE SCV SSCS
- Fabrications were graciously provided by TSMC
- Research was supported by: Agilent, Broadcom, Intel, Marvell, TDK, Texas Instruments and the UC MICRO Program

-END-