26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin Hwang, Suni Mendis, David Su, Bruce Wooley¹

Atheros Communications, Santa Clara, California ¹ Stanford University, Stanford, California

Outline

- Introduction
- Overall Architecture
- RF Transceiver
 - Synthesizer
 - Receiver
 - Transmitter
- Calibration
- Measurement Results

Integrated PHS SoC Solution

Personal Handy-Phone System (PHS)

- Commercially launched in 1995
- Resurgence in China (> 50M subscribers in 2004)
- Single-Chip PHS Solution in 0.18mm CMOS
 - RF/Analog: RF transceiver, audio/voiceband data converters and audio amplifiers
 - Digital: PHS MODEM, TDMA, CPU, Voice subsystem, Interfaces

PHS System

- TDMA/TDD Time Domain Multiple Access / Duplexing
- **p**/4 QPSK modulation with 192kHz channel bandwidth
- 1.9GHz frequency band, 300kHz channel spacing

Advantages of System-on-Chip

- Low cost, small form factor with fewer external components
- Digital calibration
 - Wide digital-analog interface without package pins and associated power for I/Os
 - Digital calibration to repair analog impairments, eases requirements of analog RF circuits

Block Diagram of Single-Chip PHS Cellphone

RF Transceiver Block Diagram

Voltage Controlled Oscillator

Fast Synthesizer Settling (I)

Seamless handover support
 requires fast channel switching

We use only one synthesizer with fast settling

Fast Synthesizer Settling (II)

- Tradeoff between settling time and phase noise: Loop bandwidth optimization
 - Wide loop BW for fast settling
 - Low loop BW to suppress **SD** quantization noise
 - Optimized loop BW = 120kHz

Avoid over-design
Minimizing loop BW variation

- $BW = (K_{vco} I_{cp} R_s) / (2pN)$
- V_{ctrl} within 200mV \circledast K_{vco} is roughly constant
- I_{cp} tracks process variation of $R_s \otimes I_{cp}R_s$ constant
- Loop BW dynamically adjusted during switching to speed up frequency transient response
- Resulting settling time = 15ms

Direct Conversion Receiver

Receive Mixer and LO Buffers

Direct Conversion Transmitter

Segmented Power Amplifier

Digital Calibration and RF Loopback

Calibration of Analog Imperfections

- Receiver filter bandwidth
- Receiver DC offset
- I/Q mismatch
- Transmitter carrier leak

Receiver Sensitivity

Receiver Adjacent Channel Selectivity (ACS)

Receiver 2-Tone Intermodulation

Intermodulation (dBc)

Transmit Spectrum Ref 10dBm Log 10dB/ VIII III PHS standard requires OBW < 288kHz **OBW = Occupied BW containing 99% signal power** Measured OBW < 250kHz for all channels Span 2MHz Center 1.907GHz **Res BW 10kHz**

Transmitter Modulation Accuracy

PHS Standard requires EVM less than 12.5%

Transmit Adjacent Channel Power (ACP)

Synthesizer Phase Noise at 1895.15MHz

Frequency Offset (MHz)

Measured Synthesizer Settling Time

Frequency Offset (Hz)

Die Micrograph

Performance Summary

Power Dissipation	
RF Transmitter	29mA
RF Receiver	32mA
RF Synthesizer	25mA
Talk Mode (1/8 duty cycle Tx & Rx)	81mA (including audio and digital)
Standby Mode	1mA (including audio and digital)
Phase Noise @ 1.9GHz	-118dBc/Hz @ 600kHz offset
Settling time to +/- 1kHz	15 ms
Receive Sensitivity	-106dBm
Receiver Noise Figure	3.5dB
Transmit Power (EVM compliant)	+4 dBm
Transmit EVM	4% rms @ 1dBm
	1% rms @ -10dBm
Technology	Standard 0.18mm CMOS
Supply Voltage	3.0V with internally regulated 1.8V
Die Size: Total	33 mm ²
RF and Analog	12 mm ²
Package	276-pin BGA

Conclusions

- Demonstrated single-chip PHS cellphone in 0.18 µm standard digital CMOS
- SoC performance meets or exceeds all PHS specifications
- System on a single chip allows for digital calibration to ease requirements of analog circuits

Acknowledgments

The authors wish to acknowledge the contributions from the entire PHS team at Atheros, especially their efforts in algorithm development, digital design, and system design and verification