Clock and Data Recovery in High-Speed Wireline Communications

Nikola Nedovic Fujitsu Laboratories of America Sunnyvale, CA May 21, 2009

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Outline

- Introduction
- Design Strategy system and architecture
- Hybrid Oversampling CDR
- Design Example
- Measurements
- Conclusion

• Input at the receiver:

- Jitter timing deviation from ideal phase
- Wander low frequency timing variations
- Noise voltage-domain fluctuations
- Asynchronous to any clock in the system
- Clock and Data Recovery (CDR) widespread in communication systems
- Extracts clock from the incoming data stream and synchronizes the data with the clock
- Often performs demultiplexing to a lower data rate

CDR Design Requirements

• Specifications

- Bit Error Rate (BER)
- Electrical specifications
- Jitter Tolerance
- Jitter Transfer
- Alarms specifications (Loss of Lock, Loss of Signal)
- Power limit
- Consecutive Identical Digits (CID) limit
- Specific requirement for particular system
 - Optical system may require phase adjust
 - Multi-bit-per-symbol signaling (e.g. PAM-4, duobinary) may require locking to specific edges

SONET OC-768 Jitter Tolerance Mask

CDR Architecture

Phase-tracking

- Feedback architecture
- Center samples hard-wired to output
- CDR loop tracks low-frequency jitter
- Low-jitter VCO for high-freq. jitter tolerance

Blind oversampling

- Feedforward architecture
- Transitions detected from several samples per UI
- Inserting or removing bits from FIFO tracks low frequency jitter

Linear Model

- Linear analysis from control systems possible and extremely useful
 - Stability, loop bandwidth, jitter transfer, steady-state error, noise transfer function...
- Linear model is only an approximation (sometimes crude)
 - Nonlinearities limit usability of the model, e.g. bang-bang PD

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Linear Model (cont'd)

• Low-pass input jitter transfer

High-pass / band-pass jitter generation

Design Strategy: System and Architecture

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

CDR Design Strategy: System

• 1) Choose technology if possible

- CMOS slow but cheap, widely available, easy to integrate and lowpower
- III-V Compounds (GaAs, InP) much faster but expensive and highpower
- BiCMOS (e.g. SiGe)

• 2) Decide architecture

- Feedback phase tracking CDR dominant
 - Simple, well understood, capable to support high data rates, relatively low power
- Blind oversampling only if wander is small
- Special architecture for given application (e.g. burst, MIMO)
- 3) Based on application, data rate, and available technology choose loop linearity type and rate
 - Bang-bang loop faster thus preferrable in high-speed applications
 - Linear loop easier to control and model thus preferrable at lower speeds
 - Choose highest rate that the technology can accommodate
 - VCO frequency, sampler frequency and aperture usually critical

Design Strategy: Loop BW and Type

• 4) Choose loop bandwidth

- Loop $BW\uparrow$ \Rightarrow input noise transfer \uparrow , VCO noise generation \downarrow
- BW lower bound: the knee of jitter tolerance characteristics
- Upper bound: defined by bandwidth of jitter transfer if specified, ultimately by loop stability

• 5) Choose loop type and numbers of poles and zeroes

- Normally defined by loop filter
- Desired type-II (two poles at f=0) for zero steady state error for a frequency step
 - One 1/s term from phase integrating function of the VCO
 - Additional 1/s term from loop filter typically done by an active circuit (e.g. charge pump)
- Simplest loop filter:

$$H_{LPF}(s) = \frac{K_{CF}}{s}$$

- Unfortunately, with above loop filter, the system becomes unstable
 - Closed loop poles on imaginary axis

May 21, 2009

Loop BW and Type (cont'd)

• Need a stabilizing zero:

$$H_{LPF}(s) = \frac{K_{CP} \cdot (1 + sC_1R)}{s(C_1 + C_2) \cdot \left(1 + s\left(\frac{C_1C_2}{C_1 + C_2}\right)R\right)} = \frac{K_{CP} \cdot (1 + s/z)}{s(C_1 + C_2) \cdot \left(1 + \frac{s}{p}\right)}$$

High-frequency pole in the filter is due to parasitic capacitance at V_{CTRL}, also useful to suppress spurs

May 21, 2009

Design Strategy: Pole / Zero Positioning

6) Determine pole/zero position

For maximum phase margin:

$$\omega_{\mathbf{C}} = \sqrt{\mathbf{z}\mathbf{p}}$$

$$\mathsf{P}\boldsymbol{M} = \mathbf{2}\boldsymbol{a}\boldsymbol{r}\boldsymbol{c}\boldsymbol{t}\boldsymbol{g}\left(\sqrt{\frac{\boldsymbol{p}}{\boldsymbol{z}}}\right) - \frac{\pi}{2}$$

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Design Strategy: Pole / Zero Positioning (cont'd)

- In a bang-bang system, concept of transfer function and bandwidth does not exist
- Still possible to design having in mind that bandwidth depends on amplitude of disturbance
- Statistically, gain of PD can be linearized through VCO jitter and/or input jitter
 - Implies the system parameters such as bandwidth, jitter transfer, peaking etc depend on noise !
 - A wide design margin should be allocated

May 21, 2009

May 21, 2009

• K widely varies in non-linear CDR

- Design for wide margin
- About 4x span for K available for damping factor ζ >1/sqrt(2)

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Design Strategy: Architecture

- 7) Examine CDR transient locking behavior
 - Lock range is the maximum difference between VCO clock and data rate for which lock is achieved without a cycle slip
 - All recovered data are valid
 - Useful for burst CDRs, less for continuous mode CDRs
 - Pull-in range is the maximum difference between VCO clock and data rate for which lock is eventually achieved
 - cycle slips allowed, some data may be invalid
 - Most important parameter for conventional continuous mode CDRs
 - Plenty of literature on lock/pull-in properties of PLLs, most for first or second order loops and/or oversimplified
 - Pull-out range is maximum difference between VCO clock and data rate for which CDR stays in lock

- If VCO and data frequencies differ, VCO clock "sweeps" data eye
- PD output has a beat frequency component equal to f_D-f_{VCO}
- Area between f_D and f_{VCO} is equal to one unit interval (UI) over one beat period

CDR Lock and Pull-in

- Pull-in happens when f_{VCO} converges towards f_D in one DN-UP cycle
- Change of f_{VCO} in one UP/DN cycle proportional to difference of inverses of average Δf 's in UP and DN cycles.
 - Ideally, $\phi(PD \rightarrow V_{ctl}) < \pi/2 \implies$ pull-in range is equal to tuning range

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

CDR Pull-in with Latency in the Loop

- Pull-in in 3rd order type-II CDR with latency in the loop ccccccccccccccccccccccccccc D Ė Ė Ė F F F F t_{DN} t_{UP}=t_{DN} UP Ilatencv DN data rate f_D area=UI/2 ∆**f=**∆**f**_{init} area=UI/2 f_{VCO} [∐] *A*finit ★ ∆f_{avq}(DN) $\Delta f_{avg}(UP) = \Delta f_{avg}(DN)$
- Pull-in limited by latency of PD/DEMUX
- Pull-in depends on the phase of the loop gain
 - If $\varphi(\beta A(s=j|\omega_{VCO}-\omega_D|))=-\pi$, there is no pull-in (false lock)
 - A safe pull-in range is about loop bandwidth as there is a defined phase margin for stability (latency acounted for) x100ppm-x1000ppm

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Aided Frequency Acquisition

- As pull-in can be guaranteed only for a few hundred ppm around data rate, phase tracking CDR's use aided frequency acquisition
- Most common: dual loop

• Frequency detector monitors the frequency difference between rclk and Ref. clk

- Switch to frequency acquisition loop if greater than a threshold
- Switch to phase loop if less than a threshold

Summary - Part I

- CDR linear model useful but one must be aware of limitations
- High-speed design severe nonlinearities
- Concurrent system, architecture, and circuit design needed
 - Circuit specifications depend on architecture, system specifications
 - Loop dynamics depends on circuit non-idealities
- Behavioral simulation necessary

Hybrid Oversampling CDR

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Hybrid CDR Architecture

- Detect edge positions as in blind oversampling and lock to these edges as in phase tracking CDRs
- Output data are the samples furthest from the transition
- CDR loop only needs to loosely track low-frequency jitter
 - FIFO tracks high-frequency jitter
 - Maximum tolerable phase error > 1UI, depends on FIFO depth
- Oversampling allows seamless lock directly from data and suppresses low-frequency VCO jitter

Hybrid CDR: Principle of Operation

- Sample more than two times per UI, detect phase by comparing adjacent samples
 - Detect the *direction* of the phase error
 - Operating range of the phase detector > 2π
- Keep track of the detected phase in Finite State Machine (FSM)
 - Each position in FSM represents a discrete amount of phase error
- Send the phase information to VCO for clock recovery

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Hybrid Oversampling CDR: Strategy Revision

• Loop bandwidth can stay same for more design margin, or it can be reduced for better input jitter tolerance

Hybrid Oversampling CDR: Frequency Acquisition

May 21, 2009

Hybrid Oversampling CDR: Effect of Circuit Parameters on Performance

• Bit error ocurrs when the VCO wanders during CID so phase tracking direction is erroneous (bit skip)

- Expression for VCO jitter tolerance is complex and not enlightening, however some insight is possible
 - Gradual changes in phase due to accumulating VCO jitter tracked by the FSM
 - Break dependency of BER on loop bandwidth
 - Hybrid scheme has much higher tolerance to VCO jitter than phase tracking CDR
 - Potential direction for deep submicron technologies that suffer from relative increase of noise, jitter
- Tighter specification for sampler aperture

Design Example

Circuits: Design Example

• 40Gb/s 3x oversampling hybrid CDR [Nedovic et al., ISSCC'07]

May 21, 2009

Circuits: Input Data Line

- 208 μ m long T-line segments between DEMUX taps
- Digitally controlled varactors in the middle of the segments
 - Avoid large discontinuities, reduce distortion
- Parallel loss R_{SHUNT} to reduce ISI
 - Distortionless line:

$$\frac{R}{L} = \frac{G}{C} \qquad \qquad \text{loss} = \sqrt{RG} \neq f(\omega)$$
$$\text{delay} = \sqrt{LC} \neq f(\omega)$$

- + $\mathsf{R}_{\mathsf{SHUNT}}\text{=}670\Omega$ as a compromise between ISI and loss
- Analogous to Pupin coils from early days of telephone industry

Circuits: Sampler

• CML latch

 Transistors p1 and p2 to improve bandwidth and shut off input differential pair

• Sense Amplifier

- Reset in the off-phase through feedback n5-n8
- Compare input with output using quad n1-n4 to reduce aperture

• Two-stage buffer

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

• Distributed closed-loop VCO with built-in mechanism to set the clock direction counter-clockwise [Tzartzanis et al, ISSCC'06]

Circuits: Charge Pump / Loop Filter

May 21, 2009

Charge Pump Characteristic

May 21, 2009

Summary - Part II

- Hybrid oversampling CDR takes more than two samples per unit interval in PLL-like loop
 - Detect the direction of the phase error
 - Improves jitter tolerance jitter generation tradeoff
 - Improve pull-in range
 - Improve immunity to VCO noise

Measurement Setup

• Building measurement setup

- Goal: generate setup that enables us to verify that a design meets specifications
- At high data rates, integrated test systems either don't exist or cost too much
 - Justified only for production test
- DIY measurement setup is a project on its own!

• Most critical test is jitter tolerance

- Requires generation of input signal with sinusoidal jitter with varying frequency and amplitude
- For low jitter frequencies (<~1MHz), we can use internal phase modulation of CW signal sources
- For high jitter frequencies, external modulation must be used
 - External IQ modulation up to 800MHz is available as an option in Agilent's E8267C

Generation of Sinusoidal Jitter with External IQ Modulation

N. Nedovic, "Clock and Data Recovery in High-Speed Wireline Communications"

Phase Modulation Approximations

IQ plane trace for max. deviation of pi/4

May 21, 2009

Jitter Tolerance Test

May 21, 2009

Spectrum and Phase Noise of Recovered Clock

May 21, 2009

Jitter Tolerance

May 21, 2009

May 21, 2009

Summary - Part I, Part II, Part III

- CDR linear model useful but one must be aware of limitations
- High-speed design severe nonlinearities
- Concurrent system, architecture, and circuit design needed
 - Circuit specifications depend on architecture, system specifications
 - Loop dynamics depends on circuit non-idealities
- Hybrid oversampling CDR allows for decoupling between highlevel and low-level design parameters
 - Detect the direction of the phase error
 - Improves jitter tolerance jitter generation tradeoff
 - Improve pull-in range
 - Improve immunity to VCO noise
- Design of measurement setup at high data rates is an entire project by itself
- Behavioral simulation necessary