Digitally Assisted A/D Conversion-Trading off Analog Precision for Computing Power

SCV SSC Chapter Meeting May 15, 2003

Boris Murmann, PhD Candidate University of California, Berkeley bmurmann@eecs.berkeley.edu

Outline

In Motivation

- Digitally Assisted Pipelined ADC
 - o Circuit Concepts
 - o Experimental Results
- Other Work & Future Opportunities
 Conclusion

"The Digital Revolution"

	1974	2002	Rate of Change
Transistor Feature Size	6µm	0.13µm	0.7x every 2-3 years
Lead µP Transistors/die	5000	≈200,000,000	2x every 1.8 years
Lead µP Peformance	0.3 MIPS	≈10,000 MIPS	2x every 1.9 years

[Moore, ISSCC 2003]

ADC vs. µP Performance

Modern Application

802.11 Baseband Processor [Thomson et. al., ISSCC 2002]

Proposed Approach

□ Relax analog domain precision & complexity

- \Rightarrow Reduced power consumption
- \Rightarrow Improved deep sub-µm compatibility
- \Rightarrow Higher speed (?)
- □ Recover conversion accuracy in digital domain
- "Digitally Assisted A/D Conversion"

Outline

Motivation

Digitally Assisted Pipelined ADC

- o Circuit Concepts
 - Analog Errors & Digital Compensiton
 - Correction Parameter Estimation & Tracking

• Experimental Results
 Other Work & Future Opportunities
 Conclusion

Generic Pipelined ADC

 Predominant topology for wide performance range: 10-14 bits, 10-200MHz

Relax Analog Precision?

"Digital correction" helps tolerate large sub A/D errors [Lewis, 1987]

"Digital calibration" removes D/A and linear gain error by adjusting digital weights [Karanicolas, 1993]

Relax Analog Precision?

"Digital correction" helps tolerate large sub A/D errors [Lewis, 1987]

"Digital calibration" removes D/A and linear gain error by adjusting digital weights [Karanicolas, 1993]

□ Remaining burden: Fast, <u>highly linear</u> gain element

50-70% of total pipeline ADC power is consumed by interstage amplifiers

Conventional Gain Element

- Electronic feedback linearizes, desensitizes
- □ High gain requirement costs headroom and/or additional stages ⇒ power penalty
- Semiconductor technology trend: Decreasing VDD and low intrinsic device gain!

Alternatives

Precision Requirements

□ Residue errors must be < $\frac{1}{2}$ LSB of "backend converter" □ E.g. 3-bit Stage1 in 12-bit converter \Rightarrow 9-bit backend $\Rightarrow \varepsilon_1 < 0.1\%$

Basic Amplifier Considerations

- □ Example: Simplest possible topology
- □ What fraction of transfer function should be used?

Transfer Function Nonlinearity

Design Example

V _{ref}	R	\hat{V}_x	V_{dsat}	
	1	500 mV	≥ 1 V	
1 V	2	250 mV	≥ 500 mV	
1 V	3	125 mV	≥ 250 mV	
	4	62.5 mV	≥ 125 mV	

Simple diff. pair "practical" for stage resolution R>2
 Third order error model sufficient in this case

Pipeline Stage Model

□ How can we correct errors digitally ?

Offset Pushthrough

- □ Input referred converter offset, does not harm linearity
- Equivalent sub-A/D offset can be addressed with digital RSD arithmetic [Lewis, 1987]

Gain Error Pushthrough

Gain Error Pushthrough

- Correct digital weight of sub-conversion [Karanicolas, 1993]
- □ Results in (often) tolerable input referred gain error

Second Order Cancellation

If
$$a_3 \neq 0$$
:
 $a_1 x + a_2 x^2 + a_3 x^3 = b_0 + b_1 (x - s) + b_3 (x - s)^3$
[*With*: $b_3 = a_3$ $b_1 = a_1 - \frac{a_2^2}{3a_3}$ $b_0 = \frac{2a_2^3}{27a_3^2} - \frac{a_1a_2}{3a_3}$ $s = \frac{a_2}{3a_3}$]

Use of Digitized Residue

- Compensate error using digital backend representation of residue
- □ Add 1-2 bits to backend to reduce quantization error

Third Order Correction

Third Order Correction

24

Third Order Correction

- Single-parameter correction function can be precomputed and stored in look-up table (ROM)
- Small ROM size achievable through continuous data compression methods

Complete Digital Correction

How can we measure/calibrate parameters in digital domain?

Outline

Motivation

Digitally Assisted Pipelined ADC

- o Circuit Concepts
 - Analog Errors & Digital Compensition
 - Correction Parameter Estimation & Tracking

• Experimental Results
 Other Work & Future Opportunities
 Conclusion

Calibration Concept

- □ Correction parameters depend on temperature, etc.
- □ Classical "foreground calibration" unfeasible
- Need continuous "background calibration" during normal A/D operation

Key: Two-Residue Pipeline Stage

Add: Digital SHIFT signal, redundant A/D and D/A states
 Can carry out conversion on "red" or "black" segments

Digitized Segment $(a_2=0)$

- □ Idea: Measure h_1 , h_2 and force difference to 0
- □ How to measure without interrupting A/D operation?
- Solution: Statistics based measurement

Distance Estimation (1)

For each input sample "fair coin toss"
 [independent of V_{in}(k)] decides red/black

Distance Estimation (2)

- □ Simple input model: *stationary* random process
- □ Count # of codes ≤ q in "black channel" \rightarrow cumulative histogram CH_{ref}(q)

Distance Estimation (3)

□ Place counter array in "red channel"

□ After n samples, find "red" count that is closest to $CH_{ref}(q) \Rightarrow Distance Estimator H^*$

Distance Estimation (4)

Estimation fails if signal not "busy" around v_q
 Detectable!

LMS Loop

- □ Accumulator forces average H_2 - H_1 to zero
- \Box Tradeoff: Residual variance of p₃ vs. tracking time constant
- \Box Straightforward extension to track p₁, p₂

Tracking Time Constant

- Example: N bit converter with 3-bit Stage1, uniform input distribution
- Must address/attenuate potentially faster variations in analog domain

On-Chip Temperature Variations

Solutions:

- Local replica biasing
- Keep distance to "hot spots", common centroid layout

Outline

Motivation

Digitally Assisted Pipelined ADC

o Circuit Concepts

o Experimental Results

Other Work & Future Opportunities Summary

Die Photograph

- □ "Proof of concept": 12bit, 75MHz ADC, 0.35µm
- □ Re-used commercial part (Analog Devices AD9235)
- $\hfill\square$ Modified only 3-bit Stage1 \rightarrow Open-loop
- □ Digital post-processor off-chip (FPGA)

Open Loop Pipeline Stage

 \Box Open-loop \Rightarrow "New" second order circuit effects

Measured INL

Measured INL

INL Zoom (Post-Proc. ON)

Measurement Results: Tracking

44

Performance Summary

у	0.35µm CMOS			
tage	3V			
	12b			
n Rate	75 MSamples/sec			
	With	Without		
	Calibration	Calibration		
=1MHz =40MHz	68.2 dB 67 dB	48 dB		
=1MHz =40MHz	-76 dB -74 dB	-50 dB		
=1MHz =40MHz	80 dB 76 dB	52 dB		
	-0.5, +0.5 LSB	-1, 0.6 LSB		
	-0.9, +0.6 LSB	-19, +16 LSB		
sipation /ers	290 mW 24 mW			
	y tage n Rate =1MHz =40MHz =1MHz =40MHz =1MHz =40MHz sipation	y 0.35µm (x) tage 3V 12t 12t n Rate 75 MSamp With Calibration =1MHz 68.2 dB =40MHz 67 dB =1MHz -76 dB =40MHz -74 dB =1MHz 80 dB =40MHz 76 dB =10Hz 80 dB =40MHz 76 dB =0.5, +0.5 LSB -0.9, +0.6 LSB sipation 290 m //ers 290 m		

With calibration: Within data sheet of commercial part (AD9235)!

Digital Post-Processor

Only 1st and 3rd order correction (p₁ and p₃)
 Synthesis & Place/Route results using 0.35µm CMOS library:

Stage1 Power Breakdown

Prototype Summary

Open-loop residue amplification

- Reduces ADC power consumption
- Improves deep sub-µm compatibility
- May help in pushing attainable speed
- □ Resulting analog errors
 - $_{\circ}$ "Slow" \rightarrow statistics based digital calibration
 - $_{\circ}$ "Fast" \rightarrow analog domain techniques
- \square Judicious combination of digital and analog techniques \Rightarrow feasible, low overhead solution

Continuation Work

- □ Optimized deep sub-µm design
- Multi-stage calibration
- Cash in on simplified circuits
 - Push conversion speed
 - Explore architectural simplifications to lower power
- Work in progress at Berkeley: 12b, 200MS/s, 200mW, power 4x below state-of-the art!
- At Analog Devices: Commercial implementation for embedded applications in fine line technology

Outline

Motivation
 Digitally Assisted Pipelined ADC

 Circuit Concepts
 Experimental Results

 Other Work & Future Opportunities
 Conclusion

Recent Digitally Assisted ADCs

	Target		Issues adressed			
Work	Perfor- mance	Low power	Amplifier Errors		Matching,	Deep sub-um
			Lin.	Nonlin.	Offset	compatib.
Murmann, ISSCC 2003 Pipeline		\checkmark	\checkmark	\checkmark		\checkmark
Jamal, ISSCC 2002 Time Interleaved	\checkmark				\checkmark	
Yu, ISSCC 2001 Pipeline	\checkmark		\checkmark		\checkmark	
Ming, ISSCC 2001 Pipeline			\checkmark		\checkmark	

□ So far: initial attempts, proof of concept studies

□ Expected breakthrough: new, tailored ADC architectures

Dynamic Error Compensation

Static Error Model

Dynamic Error Model

- Dynamic errors limit spurious & distortion performance many ADCs
- Today: Lots of effort to mitigate dynamic errors through analog domain design techniques
- □ Future opportunity: Digital compensation!
- □ Feasible solution to be demonstrated

Need More "Digitally Assisted Analog"

- □ Don't care only about ADC!
- Broad, multidisciplinary, system oriented approach to address showstoppers in entire analog signal chain:
 - Transducers, sensors
 - Transmission media
 - A/D and D/A conversion interfaces

Conclusion

- Demonstrated feasible concept for digitally assisted pipelined ADC
- Lots of room to explore digital postprocessing techniques beyond recent efforts
- □ Visions:
 - New ADC topologies that are tailored to maximally benefit from digital assistance
 - System level: Expand on compensation of analog signal path nonidealities