

STANFORD ELECTRICAL ENGINEERING

1.8-V CMOS ΣΔ Modulator Performance

Dynamic range	99 dB
Peak SNR	99 dB
Peak SNDR	95 dB
Bandwidth	25 kHz
Oversampling ratio	80
Power dissipation	2.5 mW
Active area	1.5 mm ²
Technology	0.8-μm CMOS
Threshold voltages	+0.65 V, –0.75 V

Bruce A. Wooley

- 39 -

Copyright 2004, Stanford University

STANFORD ELECTRICAL ENGINEERING

Power Efficiency Figure of Merit

Power efficiency as a Figure of Merit:

 $FoM = \frac{Dynamic Range \times Bandwidth}{Power}$ $= \frac{2^{2N} \times BW}{Power} \quad (MHz/mW)$

where Dynamic Range is a POWER, not voltage, ratio N = effective # of bits of resolution

- For circuits in which the dynamic range is limited by thermal noise and the bandwidth is not limited by technology:
 - Quadratic dependence on voltage dynamic range
 - Linear dependence on bandwidth

Performance Summary

Analog Supply Voltage	1.2 V
Sampling Rate	40 MHz
Signal Bandwidth	1.25 MHz
Dynamic Range	96 dB
Peak SNDR @ 366-kHz input	89 dB
Analog Power	44 mW
Digital Power	43 mW *
Active Area	8.6 mm ²
Technology	0.25-μm CMOS

* Estimate 10 mW digital power in 0.13-µm CMOS

Bruce A. Wooley

- 59 -

Copyright 2004, Stanford University

STANFORD ELECTRICAL ENGINEERING **Bandpass Oversampling D/A Conversion *** Consider the use of cascaded noise shaping for bandpass D/A conversion in RF transmitters Move IF into the digital domain to eliminate - dc offset - I & Q mismatch Merge D/A conversion, noise shaping, reconstruction and mixing to IF Explore the use of cascaded noise shaping with semidigital filtering * D. Barkin, 2003 VLSI Ckts Symp Bruce A. Wooley - 60 -Copyright 2004, Stanford University

STANFORD ELECTRICAL ENGINEERING

Bandpass DAC Performance

Technology	0.25-μm CMOS
Center frequency	50 MHz
Bandwidth	6.25 MHz
Peak SNDR	76 dB
Dynamic range	85 dB
Minimum out-of-band suppression	80 dB
Mirror for –6 dB Input	–90 dB
Active area	2.1 mm ²
Power (except for current sources)	100 mW

Bruce A. Wooley

- 71 -

Copyright 2004, Stanford University

