Applications of Unique Superconductor Quantum Phenomena in Electronics

Professor Ted Van Duzer Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720-1770 vanduzer@eecs.berkeley.edu

- Elements of superconductor phenomena
- Existing applications
- Emerging medical applications
- Digital and analog-to-digital circuits
- Forefront research directions

IEEE Council on Superconductivity http://www.ewh.ieee.org/tc/csc

Superconductor Fundamentals

BCS Pairing Concept

At nonzero temperature, pairs are mixed with unpaired electrons.

Magnetic Flux Quantization

In superconductors, magnetic flux is quantized in units of

$$\Phi_0 = h/2e = 2.07 \times 10^{-15}$$
 weber

TYPES OF JOSEPHSON JUNCTIONS

EXISTING APPLICATIONS

COMMERCIAL

- Cellular base stations
- Volt standard
- Ultra-sensitive magnetometers
- NMR detector coils

SCIENTIFIC

Radio astronomy millimeter-wave receivers

Cellular-Base-Station Receivers with high-T_c superconductor filters

More than 3000 in service, or on order

STI SuperFilter[®] Systems

SuperFilter[®] System

- 12 superconducting preselector filters
- **6** Low Noise Amplifiers
 - Cryo-package & controls smaller than conventional

SUPERCONDUCTOR TECHNOLOGIES

High Performance HTS Bandpass Filter

34mm X 18mm Die 10 HTS Resonators Qu = 80,000 6 Cross Couplings 6 Tx Zeros High Yield Production

SUPERCONDUCTOR TECHNOLOGIES

Extremely Low Noise, with High Selectivity

02002 Duomeondupter Trittin Algelini

SuperFilter "under the hood"

Dewar with Filters & LNAs

Controller &

Cooler Driver

The Volt Standard using Josephson junctions

About 70 systems in national, industrial, and military standards laboratories worldwide

VOLT STANDARD

1 volt (3660 JJs)

10 volts (20,208 JJs)

HYPRES Primary Volt-Standard System (0.05 ppm)

- Closed cycle refrigeration
- Microprocessor controlled

Ultra-Sensitive Magnetometers (10⁻¹⁰ x Earth's magnetic field)

SQUID FLUX-TO-VOLTAGE CONVERSION

COUPLING FLUX TO A SQUID

SQUID

Input transformer

Gradiometer

Laboratory SQUID Systems

iMAG[®] components

LTS Measurement System

MPMS Susceptometer

NMR sensitivity enhancement with HTS probe coil

Radio Astronomy Millimeter-Wave Receivers

SIS Tunnel Junction Mixing

Millimeter Wavelength SIS Mixing

Radio Astronomy Array at Hat Creek, CA

Currently 75 SIS mixers

Array under construction in Chile----900 SIS mixers

Two receivers/antenna with SIS mixers 80-116 GHz and 220-270 GHz

Emerging Medical Applications of SQUID Systems

Heart, brain, lungs, liver, nerves, skeletal muscle, stomach, intestines, eyes, etc.

Detection of fetal heart arrhythmia

Magnetocardiography (MCG)

(Mapping, imaging, and localizing heart magnetic activity)

provides Accurate Diagnosis helping physicians SAVE LIVES

CardioMag Imaging Inc.

Magnetoencephlography (MEG) Measurement of magnetic fields produced by currents in the brain

151 Channels

CTF Systems, Inc.

Applications of MEG

- Pre-surgical mapping
- Localization of epileptic seizure foci
- Detection of slow waves associated with stroke, head trauma, and transient brain ischemia

Digital and analog-to-digital circuits

Superconducting single-flux-quantum circuits for speeds beyond semiconductors

Toward Higher Speed Digital Electronics

CMOS processor speed increase limited by:

- Shrinking gate oxide thickness
- Interconnect RC increase in scaled circuits
- Chip power dissipation
- Expense of fabricating smaller features

On the horizon for higher speed:

- Still some speed improvement for CMOS
- Compound semiconductor can give higher speed but gate count limited by power dissipation
- Nano-devices (incl. SET) will be slow
- Superconductor electronics

Overview of Superconductive Electronics

Demonstrations of High-Speed Circuits (RE: Previous slide)

- Determined speed using only fastest elements
- Junction counts compared to transistor counts directly
- Some integration-scale numbers were estimated
- Includes digital and mixed-signal circuits
- List may still be incomplete

Rapid-Single-Flux-Quantum (RSFQ) Logic

Picosecond-scale pulses with amplitude less than 1 mV carry data between gates. Clock and data pulses are same.

SFQ Logic Bit Energy

 $\int v(t)dt = \Phi_0$ Energy $\cong \int I_c v(t)dt \cong I_c \Phi_0$ Typical $I_c \cong 0.1$ mA

Energy/bit \cong 10 ⁻¹⁹ joules

[Advanced CMOS switching energy $\cong (1/2)CV_{dd}^2 \cong (1/2) \times 10^{-14}$ joules]

Rapid Single Flux Quantum (RSFQ) Circuits (Examples)

RSFQ Gate Physical Layout on IC

2-bit Dual – Rail DEMUX at 50 GHz

- Record T flip-flop (770 GHz) SUNY, Stony Brook
- Demultiplexer and On-chip Test System (18 GHz)

UC Berkeley/Yokohama National Univversity

- 4-bit decimation filter (11 GHz) Rochester University
- Clock Recovery Circuit (20 GHz) Conductus
- Shift registers (4-bit @ 60 GHz, 1024-bit @20 GHz) HYPRES
- Decimation Digital Filter (14-bit @ 20 GHz) HYPRES
- Pseudo-Random Bit Sequence Generator (40 GHz), TRW
- 6-bit Spread-Spectrum Modulator (5.4 GHz), Northrop Grumman

50 GHz Digital Test of DEMUX

FLUX-1 Demonstration Status

- FLUX-1 chip designed and fabricated (photo at left)
- 10.65 mm x 13.2 mm chip
- FLUX-1 in test
- 1.75 μm, 4 kA/cm² Nb technology
- 20 GHz internal clock
- 5 GByte/sec inter-chip data transfer
- Scan path diagnostics included
- 70 K junctions, 5 K gate equivalent
- Power dissipation $\sim 5 \text{ mW}$ @

Josephson-CMOS Hybrid Memory

(A potential solution for the memory for Josephson logic)

Project goal: 64-kbit subnanosecond random access memory (Equivalent Josephson memory requires about 600,000 JJs.)

Parameter Fitting using BSIM3 Device Model

T = 300 K

T = 4.2 K

Rohm 0.35 um process 0.35 um x 10 um

Optimizer: Aurora (Synopsis)

Complete Input Interface Amplifier

High-Speed Test Configuration

Stacked-chip structure

Analog-to Digital Converter

Application to digital radio

HYPRES

Objective: *Digital RF*

SNR (SINAD) Performance

© 1998 HRL, LLC. ALL RIGHTS RESERVED

ADC Chip (2G Design)

Standard 3.5-um JJ process

- 1 kA/cm²
- 1 cm x 1 cm chip

SQUID Qubit for Quantum Computing

Reason for interest in QC: Factoring and encription

Goal: large number of qubits all entangled quantum mechanically

States must stay coherent for 10⁴ x clock period

Decoherence by noise and coupling to external modes

Superconductor advantage:

Large energy separation of s-c state from dissipative state

Forefront Research Directions

Materials and Devices

MgB₂ films (and junctions) for 20 K operation LTS internally shunted Josephson junctions LTS micron and submicron junctions with high J_c HTS Josephson junctions Components for quantum computing

Circuits and Systems

Improve unshielded SQUIDs Improve sensitivity of HTS SQUIDs Small HTS digital circuits Raise SNR of A/D converters Develop software radio application Demonstrate 50 GHz (and higher) RSFQ circuits Demonstrate large digital processor, switches