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WLAN Standards Evolution

• FHSS and DSSS

• 1, 2 Mbps DSSS

• ~11 MHz bandwidth

• 2.4-2.5 GHz

802.11 
(1997)

• DSSS and CCK

• 1, 2 Mbps DSSS

• 5.5, 11 Mbps CCK

• ~11 MHz bandwidth

• 2.4-2.5 GHz

802.11b 
(1999)

• OFDM

• 6, 9, 12, 18, 24, 36, 48, 54 Mbps

• ~17 MHz bandwidth

• (4.92-5.1) 5.15-5.825 GHz 

802.11a 
(1999)

• DSSS, CCK and OFDM

• 1 – 54 Mbps

• ~11 or ~17 MHz bandwidth

• 2.4-2.5 GHz

802.11g 
(2003)=+Æ

• DSSS, CCK, OFDM, and MIMO-OFDM

• 1 – 600 Mbps (77 new modulation and coding sets)

• Up to 1.1x rate through higher max code rate

• Up to 4x through use of multiple antennas

• ~11, ~17 or ~35 MHz bandwidth

• Up to 2.5x rate through bandwidth expansion

• 2.4-2.5, (4.92-5.1) 5.15-5.825 GHz

• Flexible transmitter and receiver PHY components

• MAC-layer aggregation

802.11n 
(2008?)

• Transition from low (~0.1 
bps/Hz) to high spectral 
efficiency (> 15 bps/Hz) in less 
than 10 years!

– The complexity in number of possible 
PHY rates and modes is vastly greater 
than it was at the end of the last century.
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802.11, 802.11b/g/n Regulatory Landscape

2400    2412          2437            2462        2483.5 MHz

channel 1    channel 6   channel 11

Set 1: Non-overlapping

5.5 & 11 Mbps

2400   2412   2422  2432   2442   2452  2462  2472  2483.5 MHz

ch 1        3       5        7        9       11

Set 2: Overlapping

1 & 2 Mbps

In North America
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20       20         20 MHz

5150                                           5350 MHz

30                  20                  30 MHz

5725                       5825 MHz

802.11a/n Regulatory Landscape

lower* middle* upper               band
40mW             200mW                             800mW           Pmax

indoor              indoor                                      outdoor
* +23 dBm EIRP for ETSI

5470                                                            5725 MHz

30                  20                                   25 MHz

U-NII Low/Middle Bands and ETSI Low Band

ETSI High Band

U-NII High Band

upper               band
+30 dBm*        EIRPmax

* except for ch. 140

+23 dBm EIRP

Additional channels from 4920 to 5080 MHz are defined only in Japan.
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Why Do We Need > 54 Mbps?

• First answer:  very good question.  ☺

• On second thought:
– For multiple-stream compressed video transmission

– For wireless connections to content stored in one place in the home (NAS)

– Because it’s faster than what is available today and eventually will be of equivalent 
price.  (Our experience:  speed sells.)

HDTV receiver
+ PVR

Local content 
storage

HD 
Monitor



8

Outline

• IEEE 802.11 Overview

• The Indoor Wireless Channel

• Approaches to Improving Robustness and Data Rate

• More 802.11n Draft Details

• MIMO Transceiver Design Challenges and Solutions

• Broadcom’s First MIMO Baseband IC



9

• Multipath with Strong LOS
– Below is an example of a multipath channel in the presence of a strong LOS path

– Vector r represents the mean value of the possible resultant vectors

– The area of the circle indicates the 50% contour for the distribution

– Vector magnitude indicates that probability of error is small

– If the non-LOS components adhere to a Rayleigh distribution, the underlying
distribution of the sum is Ricean.

Multipath Channels:  LOS

Access Point

Client

Φ∠= rrr

Fig. after ref [1]
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Multipath Channels:  Non-LOS
• Multipath:

– Is caused by the multiple arrivals of the transmitted signal to the receiver due to 
reflections off “scatterers” (walls, cabinets, people, etc.).

– For most indoor wireless systems, it is generally more problematic if a direct line-
of-sight (LOS) path does not exist between the transmitter and the receiver

– If incident waves are uniformly distributed over solid angle, the fade depth at any 
location is drawn from a Rayleigh distribution.  Many real indoor environments 
approximate Rayleigh fading.

Access Point

Client

Fig. after ref [1]
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Multipath Channels:  Spatial Selectivity 

• Received signal power as a function of receiver-to-transmitter distance 
for a multi-GHz transmission in a multi-path indoor environment is 
shown below.

– Received signal power can vary quite significantly with a slight change in distance

• The fade may be frequency selective if the channel impulse response 
(CIR) is long enough.

• What can we do to mitigate the effects of space and frequency 
selectivity?

Fig. after ref [2]
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Diversity
• One or more dimensions (“degrees of freedom”) can be 

exploited in a fading wireless system for diversity.
– Time

• Interleaving of coded symbols (not done in 802.11 systems due to high 
channel coherence time).

– Frequency

• when bandwidth of the modulated signal is wider than the coherence 
bandwidth of the channel

• Can be implemented in the form of:

– Spectrum spreading
– Coding and interleaving across frequency

– Space

• Use of multiple Rx and/or Tx antennas

– Selection diversity (tx or rx)
– Space-time or space-frequency coding (tx)
– Combining (rx)
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Wideband Modulation over the 
Wireless Channel

-8.125                     -.3125    .3125                          8.125 MHz

Subcarrier Index-26 -1     +1                             +26

-8.125                     8.125 MHz

Broadband channel with no OFDM subdivision Multipath channel 
response

Broadband channel with many OFDM (narrowband) subcarriers

• The received signal in a multi-path environment will suffer “fades” as shown below.

• For wideband channels (as in 802.11n) the fade is often frequency-selective.

• Orthogonal Frequency Division Multiplexing (OFDM) divides the frequency-selective 
channel into approximately frequency-flat bins through an orthogonal transform.
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OFDM and Frequncy Diversity in 802.11n
• The 802.11n standard is based on OFDM.

• OFDM addresses multi-path frequency selectivity and introduces 
frequency diversity through subdivision of the channel into parallel 
approximately flat-fading sub-channels and coding+interleaving across 
frequency (e.g., BICM).

• Signal is sub-divided into N sub-carriers, which are orthogonal to each 
other under certain conditions, through the use of an orthogonal
transformation such as the DFT/IDFT.

– Typically, a cyclic prefix (CP) is defined to ensure orthogonality in the presence of a multipath
channel.

• The values of the CP may be the last M samples of the output of the IDFT.

• The guard interval (GI), or duration of the CP, is chosen to be somewhat longer than typical long channel.

– Orthogonality deteriorates because of long channels, phase noise, distortion, frequency 
inaccuracy, IQ imbalance, …

• Causes inter-subcarrier interference and possibly inter-symbol interference

ff
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Multi-Antenna Systems: Spatial 
Diversity

• Can be achieved by using multiple antennas at the transmitter or the receiver
• Antennas are required to be placed “sufficiently” far apart in order to 

– Need to have uncorrelated signal envelope values at antenna inputs.

– In an indoor environment, an antenna separation of greater than ½ carrier wavelength is often quoted as the 
minimum separation to exploit spatial diversity.

– In practice, smaller separations may be used.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d/λ

L(
d)

Covariance of signal envelope (Rayleigh fading)

 

 

L(d) = J0
2(2*pi*d/λ) 5.24 GHz measured 

indoor channels (40 
MHz BW)

( ) ( )

( ) ( ) ( ) ( )
2/11

0

1

0

*
2/11

0

1

0

*

1

0

1

0

*

,

,ˆ,ˆ,ˆ,ˆ

,ˆ,ˆ

⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅⎟

⎠

⎞
⎜
⎝

⎛
⋅

⋅
=

∑∑∑∑

∑∑
−

=

−

=

−

=

−

=

−

=

−

=

K

k

N

i
kk

K

k

N

i
kk

K

k

N

i
kk

rx
lm

liHliHmiHmiH

liHmiH
R

( ) ( ) ∑∑
−

=

−

=

⋅
⋅

−=
1

0

1

0

),(1,,ˆ
K

k

N

n
kkk jnH

NK
jiHjiH



17

Selection Diversity Using RSSI
• In a simple Rx selection-diversity system:

– Received power at each antenna is examined in turn (during preamble 
processing, for example)

• Often a “diversity switch” is used to multiplex the antennas to the common 
receiver block

– The antenna path with the largest signal strength is selected

Ant. Div.
Switch

Radio ADC PHY + MACAnt.2

Ant.1

Ant.Tx

Tx
CHANNEL L 
> 
λ/

2
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RF

Antenna Selection Criteria

RSSI                       
(total received power=desired 
signal+interference+thermal noise)

Channel & 
Interference 
Estimation

SINR
estimation

BER
estimation

decoder bits

Capacity
estimation

A1

A2

A1 A2 A1 A2
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Maximal Ratio Combining (MRC)
• One can also combine antenna outputs instead of selecting the “best” set.

• In OFDM, MRC may be performed on a per subcarrier (m=1..num_subcarriers) 
basis to help reduce multipath deep nulls.

• The combiner weights from each branch are adjusted independently from other 
branches according to its branch SNR:

Now, can we exploit multipath propagation to increase data rates?

Fig. after ref [3]
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Exploiting Multipath for Higher Rates:
Constant-energy Capacity Increase

Each circle represents a location on one floor of an office building with offices, cubicles 
and labs.  Notice the roughly linear increase in capacity.  σ are the singular values of H.

The ratio of the first to second singular value decreases as M and N increase Æ There is 
always a benefit to using more antennas for k <= min(M,N) spatial streams, though the 
benefit diminishes.
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Space Division Multiplexing (SDM) with 
MIMO-OFDM

• In OFDM, the 
channel is broken 
into L (in this case, 
53) parallel flat-
fading channels, 
each represented by 
a single  complex 
coefficient.

• In MIMO OFDM, 
there is an NxM
complex-valued 
matrix of channel 
coefficients per 
subcarrier, where M 
is the number of 
transmitter antennas 
and N is the number 
of receiver 
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Space Division Multiplexing (SDM) 
Receivers

• One can transmit an 
independent data 
stream on each 
transmit antenna 
provided the receiver 
has at least two 
antennas.

• In this 2x2 SDM case, 
the data may be 
recovered perfectly on 
any subcarrier if its 2x2 
channel matrix is 
invertible (2 equations, 
2 unknowns) and SNR 
is high enough.

• The simplest linear 
receiver inverts the 
channel matrix to 
recover transmitted 
symbols and is 
referred to as “Zero-
Forcing”.
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Throughput-Enhancing Features of 
802.11n

• Space Division Multiplexing (SDM)

• Higher code rate (up to 5/6)

• Greater signal bandwidth

• MAC-layer aggregation and block acknowledgment (Block ACK)
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Rate-increasing Modulation and Coding 
Schemes

• Constructing a basic rate table
– 8 modulation+coding sets (MCSs) for 1 

spatial stream

– Range from BPSK rate ½ to 
64-QAM rate 5/6

– Data rates range from 6.5 Mbps to 65 
Mbps (72.2 Mbps with short GI)

• Additional streams are added in 
a similar manner for SDM

– E.g., MCS 8 is BPSK rate=1/2 for each of 
two streams (13 Mbps).

– And, so on..

Index Modulation Code 
Rate

Data Rate 
(Mbps)

0 BPSK ½ 6.5

1 QPSK ½ 13

2 QPSK ¾ 19.5

3 16-QAM ½ 26

4 16-QAM ¾ 39

5 64-QAM 2/3 52

6 64-QAM ¾ 58.5

7 64-QAM 5/6 65



26

Fragment of the 802.11n Draft 
Modulation/Coding Set (MCS)

NES NSD NCBPS

GI = 800ns GI = 400ns

Rate in Rate in Rate in Rate in

20MHz 40MHz 20MHz 40MHz

0 1 BPSK ½ 1 1 52 108 52 108 6.5 13.5 7 2/9 15

1 1 QPSK ½ 1 1 52 108 104 216 13    27    14 4/9 30

2 1 QPSK ¾ 1 1 52 108 104 216 19.5 40.5 21 2/3 45

3 1 16-QAM ½ 1 1 52 108 208 432 26    54    28 8/9 60

4 1 16-QAM ¾ 1 1 52 108 208 432 39    81    43 1/3 90

5 1 64-QAM ⅔ 1 1 52 108 312 648 52    108    57 7/9 120

6 1 64-QAM ¾ 1 1 52 108 312 648 58.5 121.5 65    135

7 1 64-QAM 5/6 1 1 52 108 312 648 65    135    72 2/9 150

8 2 BPSK ½ 1 1 52 108 104 216 13    27    14 4/9 30    

9 2 QPSK ½ 1 1 52 108 208 432 26    54    28 8/9 60    

10 2 QPSK ¾ 1 1 52 108 208 432 39    81    43 1/3 90    

11 2 16-QAM ½ 1 1 52 108 416 864 52    108    57 7/9 120    

12 2 16-QAM ¾ 1 1 52 108 416 864 78    162    86 2/3 180    

13 2 64-QAM ⅔ 1 1 52 108 624 1296 104    216    115 5/9 240    

14 2 64-QAM ¾ 1 1 52 108 624 1296 117    243    130    270    

15 2 64-QAM 5/6 1 1 52 108 624 1296 130    270    144 4/9 300    

20 40
20 40 20MH

z
40MH

z

Bits 0-6 
in HT-
SIG1 
(MCS 
index)

Number 
of spatial 
streams Modulation

Coding 
rate

Maximum rate 
in shipping 
products 
today.

MCS indices 16-31 cover 3- and 4-spatial-stream symmetric encodings.  MCS 
32 is a special frequency-diverse mode.  MCS indices 33-77 cover asymmetric 
encodings.
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802.11n Frame Formats

• The 802.11n Draft defines a “greenfield” and a “mixed mode” format.
– “Greenfield” frames are used for channels and time periods during which all legacy devices are inactive.
– “Mixed mode” frames include a legacy prefix to trigger physical carrier sense of legacy devices.

• The “high-throughput” (HT) and legacy short training fields (HT-STF and L-STF) use the 802.11a short symbols 
with cyclic shifts on additional antennas.

– Different shifts are used on HT and legacy portions.

• The HT long training fields use the 802.11a long symbols with cyclic shifts on additional antennas and 
multiplication by a matrix with orthogonal columns.

– [1 1; 1 -1] for 2 spatial mapper inputs.
– [1 -1 1 1; 1 1 -1 1; 1 1 1 -1; -1 1 1 1] for 3 and 4 spatial mapper inputs.
– STBC 2x1 is defined in the spec. as “2 spatial-mapper inputs” (NSMI = 2).

L

L

n is 1, 2, and 4 for NSMI = 1, 2, and 4 and 4 for NSMI = 3.
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HT-LTF Construction
• The HT-LTFs are constructed using the following base matrix:

• The following table shows the number of HT-LTFs transmitted 
for frames using 1-4 spatial mapper inputs:

• For 1-3 spatial streams, the bottom row(s) of the PHT-LTF matrix 
shown above is (are) deleted.

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

HTLTFP

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟
−⎝ ⎠

Number of spatial mapper inputs (NSMI) Number of HT-LTFs

1 1

2 2

3 4

4 4
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High-Throughput SIGNAL Field (HT-SIG)

• Each 4-usec symbol in the HT-SIG field is encoded as +90-degree 
rotated BPSK.
– Distinguishing HT-SIG in from legacy transmissions is straightforward.

• HT-SIG1 is the first HT-SIG symbol transmitted in time.

Q

I

+1

+1-1
-1

Q

I

+1

+1-1
-1

1
1

0

0

Q

I

+1

+1-1
-1

Q

I

+1

+1-1
-1

1
1

0

0

L-SIG HT-SIG
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• For 802.11n 20MHz mode, the spectral mask floor is set to -45dBr.
• For 802.11n 20MHz mode, there are a total of 56 subcarriers (indices-

28 through 28 with 0 excluded) 
– 8% increase in PHY rate relative to legacy A/G

Bandwidth Extension:  802.11n 20MHz Mode 
Spectral Mask

-20 -9-11-30 3020119

0dBr

-20dBr
-28dBr

-45dBr

Freq [MHz]

PSD

-28 +28
Subcarrier Index

5 dB tighter than 802.11a/g
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• For 802.11n 40MHz mode, the spectral mask floor is set to -45dBr.
• For 802.11n 40MHz mode, there are a total of 114 subcarriers (indices -

57 through +57 with 0 excluded) 
– Use of 108 data subcarriers increases PHY rate by 2.25x relative to legacy A/G

-40 -19-21-60 60402119

0dBr

-20dBr
-28dBr

-45dBr

Freq [MHz]

PSD

-57 +57
Subcarrier Index

20MHz-mode tones moved up 
and down by 20MHz, the DC 

tones filled and additional tones 
are added in the middle (added 

tones shown in blue)

TX Power:

Max allowable same as a/g. 
Total power in all TX chains = total power for legacy a/g. 
Total power in 40MHz = legacy 11a in 20MHz channel

Bandwidth Extension:  802.11n 40MHz Mode 
Spectral Mask
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MAC Improvements:  Why Aggregate 
Frames?

• RTS/CTS/A-MPDU/IBA vs. DATA/ACK improvement
– At a 300 Mbps PHY rate, 60 Mbps throughput is the upper bound for a UDP-like flow with an 

unmodified DCF MAC.

– Throughput is around 180 Mbps (or better) with A-MPDU and Immediate BA

MAC Efficiency 802.11a - 1500 Byte frames
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MAC Efficiency 802.11a A-MPDU+IBA+Coll(=1/cwmin)
4096-Byte frames - OFDM RTS/CTS
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A-MPDU Aggregation
• Control and data MPDUs (MAC Protocol Data Units) can be 

aggregated
• PHY has no knowledge of MPDU boundaries
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MIMO Power Save
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• Allows RX to remain in steady state with one 
RX chain 

• Modes:  Disabled (fully MIMO capable), Static,   Dynamic
• Dynamic MIMO Power save mode

– Move to multiple RX chains when it gets RTS directed to it
– Switch back after sequence ends
– STA or AP can request partner to issue RTS in front of MIMO frame sequence

• Static MIMO Power save mode 
(Reduce MIMO capability)

– STA requests AP to not send MIMO frames to it

• Signalled:
– HT Capabilities Element
– MIMO Power Save management action frame
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• Broadcom’s First MIMO Baseband IC
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2x2 SDM In the Context of an OFDM 
Transmitter/Receiver

• Space Division Multiplexing (SDM) up 
to 130 Mbps in 20 MHz bandwidth or 
270 Mbps in 40 MHz bandwidth (64-
QAM, 5/6 rate)

• Use 400ns cyclic advance on Short 
Training and 400ns cyclic advance on 
Long Training, SIGNAL fields and 
DATA.

• Long Training using time 
orthogonality between HT-LTF #s 1 
and 2; channel estimation in 
frequency domain reusing 11a/g 
blocks

between HT-LTF #1 and #2

L-STF L-LTF L-SIG HT-SIG HT-DATA …
c400 c400 c400 c400 c400 c400 c400
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Receiver Types for SDM

• Zero Forcing (ZF)
– Simplest receiver type (covered in intro to SDM)
– Poor performance on channels with high condition number and at low SNR

• Nrx > Nss in general for decent performance

• MMSE-LE
– Incorporates knowledge of input SNR
– Far higher complexity than ZF but better performance at low SNR
– Poor performance on channels with high condition number

• Nrx > Nss in general for decent performance

• Interference-cancelling
– Suffers large losses from error propagation with one FEC encoder

• Generally a poor choice for 802.11n

• ML Detector
– Best performance achievable open-loop while also meeting rx-tx timing requirement
– Achieves full diversity
– High complexity without clever tricks
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ML Detector and Complexity

• 2x2 MIMO system using M2-QAM modulation 

• Brute force MLD
– Log-likelihood ratio for bit k is 
– Must compute                for each M4 possible combination of QAM symbols
– Requires 20M4 multiplies and 12M4 adds per subcarrier per 4D symbol
– Provides receiver diversity order 2 with two antenna outputs

• Complexity of efficient approach (per subcarrier per 4D symbol):
– M2/8 + M/4 + 73 multiplies, [18 + 4log2(M)]M2+78 adds
– Also need 4log2M low-precision divisions for global scaling of each LLR by 1/Kσ2

– Comparisons for 64-QAM (M=8)
• Brute force ML -- 81920 multiplies and 49152 adds plus overhead
• Efficient ML -- 83 multiplies, 1998 adds including overhead
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2x2 Nss=2 ML Performance – Channel D 
NLOS
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2x2 Nss=2 Performance Summary

50 channels, 10 pkts per channel, 10,000 data bits per packet.

CG0

D

B

1. ZF-LE to MMSE-LE gap is more pronounced at lower SNR (smaller constellations 
at fixed error rate).

2. MMSE-LE/ZF-LE to ML gap is more pronounced on channels with higher condition 
number (more correlated paths) and at higher code rates (weaker code due to 
puncturing).  I.e., ML helps on poor channels at the highest data rates.
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802.11n Radio Design Challenges and 
Baseband Solutions

• Receiver dynamic range
– Must deal with desired signals from roughly +5 to almost -100 dBm at the LNA input

– Must deal with blockers with carrier frequency offset as little as 25 MHz away and 
power as much as 35 dB greater than desired signal

– Requires high-dynamic-range AGC and sensitive carrier detector.

• Transmit error vector magnitude (EVM)
– Must meet tight EVM requirements for highest OFDM rate (< -28 dB)

• Requires minimizing phase noise and I-Q imbalance (nonlinear impairments)

• Requires tight control of output power to avoid PA saturation region

• Additional challenges for compact direct-conversion receivers
– Receiver DC offset

– Local oscillator (LO) feedthrough at transmitter

– I-Q imbalance
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Using the Baseband to Detect/Mitigate 
LOFT and I-Q Imbalance in Tx

• Only LOFT shown for simplicity.

• Inject Sinusoid at FBB.

• ADC+FFT to detect FBB or 2*FBB.

• LOFT at FBB, I/Q imbalance at 2*FBB.

RFPGA PAD

LOI

LOQ

BB_I

BB_Q

To ext. 
PA or 

Antenna
Gm

Gm

LPF

LPF

DAC

DAC

ENV DET

Im FLO+FBBFLO

0 FBB 2*FBB

Sinusoids 
at FBB

LPFG
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Po=-5dBm; EVM= -40dB @ 5.24GHz

Po=-2dBm; -41dB @ 2.484GHzFrf = 5.24GHz

Post-calibration Phase Noise and EVM 
Results

Figs. after ref [4]
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The Need for a Flexible Transceiver
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Fig. after ref [5]
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Outline

• IEEE 802.11 Overview

• The Indoor Wireless Channel

• Approaches to Improving Robustness and Data Rate

• More 802.11n Draft Details

• MIMO Transceiver Design Challenges and Solutions

• Broadcom’s First MIMO Baseband IC
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An Example:  Programmable TX Engine
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Baseband Block Diagram (Showing Radio 
Interconnections)

• Supported interfaces:  JTAG (both for test and radio control), GPIOS, OTP interface, PCI/Cardbus, PCI-
Express

• Maximum supported PHY rate:  270 Mbps (includes proprietary 256-QAM mode for test) 

• Full hardware support for TKIP, AES and WEP

• Support for non-simultaneous activity in multiple bands (2.4-2.5 and 4.92-5.925 GHz)
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TCP Throughput and Range
• Close-range (10-ft.) over the air 

test at 5.24 GHz

• 2x2 system

• Max TCP throughput: 198 
Mbps

• Average throughput > 193 
Mbps

Figs. after ref [4]
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3x3 with Selection Diversity
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Baseband Plot and Summary

• Configurable static and dynamic power down 
modes (per RF path)

• Power consumption: 
– Driver down, PCI-E clkreq + ASPM:  29 mA from 3.3V 

supply*
– Driver up, associated, either PM1 or PM2, PCI-E clkreq + 

ASPM:  37 mA from 3.3V supply*
– Driver up, associated, PM0, PCI-E clkreq + ASPM:  470 

mA from 3.3V supply*
– Driver up, associated, full-rate 270 Mbps data, PM0:  820 

mA from 3.3V supply*

• Sensitivity limits:  -69 dBm at 270 Mbps (40 MHz 
bandwidth)

• Max. TCP throughput:  200 Mbps
• Operational temperature range:  0 to 75 deg C
• 3-16 dB (typ: 4-6 dB) gain over PER range of 

interest through ML detection, with additional 
gain possible through antenna selection

• 130 nm CMOS, 57.1 mm2

• Packages:
– 256-ball FBGA (PCI)
– 282-ball FBGA (PCI-E)

* Including radio current (radio is ~193 mA off 3.3V supply when actively 
receiving a 40 MHz BW signal).
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