

A 2x2 MIMO Baseband for High-Throughput Wireless Local-Area Networking (802.11n) SCV-SSC Talk

Jason Trachewsky, Vijay Adusumilli, Carlos Aldana, Amit Bagchi, Arya Behzad, Keith Carter, Erol Erslan, Matthew Fischer, Rohit Gaikwad, Joachim Hammerschmidt, Min-Chuan Hoo, Simon Jean, Venkat Kodavati, George Kondylis, Joseph Lauer, Rajendra Tushar Moorti, Walter Morton, Eric Ojard, Ling Su, Dalton Victor, Larry Yamano

> Broadcom Corporation 18 October 2007

Outline

• IEEE 802.11 Overview

- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

IEEE 802.11 Networks

WLAN Standards Evolution

802.11, 802.11b/g/n Regulatory Landscape

In North America

802.11a/n Regulatory Landscape

U-NII Low/Middle Bands and ETSI Low Band **U-NII High Band** 30 30 MHz 20 20 20 20 MHz 5725 5150 5350 MHz 5825 MHz middle* lower* upper band P_{\max} 40mW 200mW 800mW outdoor indoor indoor * +23 dBm EIRP for ETSI **ETSI High Band** 30 20 25 MHz upper band +23 dBm EIRP **EIRP**_{max} +30 dBm* * except for ch. 140 5470 5725 MHz Additional channels from 4920 to 5080 MHz are defined only in Japan. Connecting **BROADCOM** everything

Why Do We Need > 54 Mbps?

First answer: very good question. ©

On second thought:

- For multiple-stream compressed video transmission
- For wireless connections to content stored in one place in the home (NAS)
- Because it's faster than what is available today and eventually will be of equivalent price. (Our experience: speed sells.)

Outline

- IEEE 802.11 Overview
- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

Multipath Channels: LOS

Multipath with Strong LOS

- Below is an example of a multipath channel in the presence of a strong LOS path
- Vector *r* represents the *mean value* of the possible resultant vectors
- The area of the circle indicates the 50% contour for the distribution
- Vector magnitude indicates that probability of error is small
- If the non-LOS components adhere to a Rayleigh distribution, the underlying distribution of the sum is Ricean.

Multipath Channels: Non-LOS

Multipath:

- Is caused by the multiple arrivals of the transmitted signal to the receiver due to reflections off "scatterers" (walls, cabinets, people, etc.).
- For most indoor wireless systems, it is generally more problematic if a direct lineof-sight (LOS) path does not exist between the transmitter and the receiver
- If incident waves are uniformly distributed over solid angle, the fade depth at any location is drawn from a Rayleigh distribution. Many real indoor environments approximate Rayleigh fading.

Multipath Channels: Spatial Selectivity

- Received signal power as a function of receiver-to-transmitter distance for a multi-GHz transmission in a multi-path indoor environment is shown below.
 - Received signal power can vary quite significantly with a slight change in distance

 The fade may be frequency selective if the channel impulse response (CIR) is long enough.

• What can we do to mitigate the effects of space and frequency Connecting electivity? BROADCOM.

Outline

- IEEE 802.11 Overview
- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

- One or more dimensions ("degrees of freedom") can be exploited in a fading wireless system for diversity.
 - Time
 - Interleaving of coded symbols (not done in 802.11 systems due to high channel coherence time).
 - Frequency
 - when bandwidth of the modulated signal is wider than the coherence bandwidth of the channel
 - Can be implemented in the form of:
 - Spectrum spreading
 - Coding and interleaving across frequency
 - Space
 - Use of multiple Rx and/or Tx antennas
 - Selection diversity (tx or rx)
 - Space-time or space-frequency coding (tx)
 - Combining (rx)

Connecting

everything

Wideband Modulation over the Wireless Channel

- The received signal in a multi-path environment will suffer "fades" as shown below.
- For wideband channels (as in 802.11n) the fade is often frequency-selective.
- Orthogonal Frequency Division Multiplexing (OFDM) divides the frequency-selective channel into approximately frequency-flat bins through an orthogonal transform.

OFDM and Frequncy Diversity in 802.11n

- The 802.11n standard is based on OFDM.
- OFDM addresses multi-path frequency selectivity and introduces frequency diversity through subdivision of the channel into parallel approximately flat-fading sub-channels and coding+interleaving across frequency (*e.g.*, BICM).
- Signal is sub-divided into N sub-carriers, which are orthogonal to each other under certain conditions, through the use of an orthogonal transformation such as the DFT/IDFT.
 - Typically, a cyclic prefix (CP) is defined to ensure orthogonality in the presence of a multipath channel.
 - The values of the CP may be the last M samples of the output of the IDFT.
 - The guard interval (GI), or duration of the CP, is chosen to be somewhat longer than typical long channel.

BROA

- Orthogonality deteriorates because of long channels, phase noise, distortion, frequency inaccuracy, IQ imbalance, …
 - Causes inter-subcarrier interference and possibly inter-symbol interference

Connectina

everything

Multi-Antenna Systems: Spatial **Diversity**

- Can be achieved by using multiple antennas at the transmitter or the receiver
- Antennas are required to be placed "sufficiently" far apart in order to
 - Need to have uncorrelated signal envelope values at antenna inputs.
 - In an indoor environment, an antenna separation of greater than $\frac{1}{2}$ carrier wavelength is often guoted as the minimum separation to exploit spatial diversity.

Selection Diversity Using RSSI

• In a simple Rx *selection-diversity* system:

- Received power at each antenna is examined in turn (during preamble processing, for example)
 - Often a "diversity switch" is used to multiplex the antennas to the common receiver block
- The antenna path with the largest signal strength is selected

Antenna Selection Criteria

Maximal Ratio Combining (MRC)

- One can also combine antenna outputs instead of selecting the "best" set.
- In OFDM, MRC may be performed on a per subcarrier (m=1..num_subcarriers) basis to help reduce multipath deep nulls.
- The combiner weights from each branch are adjusted independently from other branches according to its branch SNR:

BROADCO

Connecting everything°

Exploiting Multipath for Higher Rates: Constant-energy Capacity Increase

Each circle represents a location on one floor of an office building with offices, cubicles and labs. Notice the roughly linear increase in capacity. σ are the singular values of H.

The ratio of the first to second singular value decreases as M and N increase \rightarrow There is always a benefit to using more antennas for k <= min(M,N) spatial streams, though the benefit diminishes. Connecting BROADCO

```
everything<sup>®</sup>
```

Space Division Multiplexing (SDM) with MIMO-OFDM

Space Division Multiplexing (SDM) Receivers

- One can transmit an independent data stream on each transmit antenna provided the receiver has at least two antennas.
- In this 2x2 SDM case, the data may be recovered perfectly on any subcarrier if its 2x2 channel matrix is invertible (2 equations, 2 unknowns) and SNR is high enough.
- The simplest linear receiver inverts the channel matrix to recover transmitted symbols and is referred to as "Zero-Forcing".

Connecting

everything

Outline

- IEEE 802.11 Overview
- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

Throughput-Enhancing Features of 802.11n

- Space Division Multiplexing (SDM)
- Higher code rate (up to 5/6)
- Greater signal bandwidth
- MAC-layer aggregation and block acknowledgment (Block ACK)

Rate-increasing Modulation and Coding Schemes

• Constructing a basic rate table

- 8 modulation+coding sets (MCSs) for 1 spatial stream
- Range from BPSK rate ½ to 64-QAM rate 5/6
- Data rates range from 6.5 Mbps to 65 Mbps (72.2 Mbps with short GI)
- Additional streams are added in a similar manner for SDM
 - *E.g.*, MCS 8 is BPSK rate=1/2 for each of two streams (13 Mbps).
 - And, so on..

Index	Modulation	Code Rate	Data Rate (Mbps)
0	BPSK	1/2	6.5
1	QPSK	1/2	13
2	QPSK	3/4	19.5
3	16-QAM	1/2	26
4	16-QAM	3/4	39
5	64-QAM	2/3	52
6	64-QAM	3/4	58.5
7	64-QAM	5/6	65

Connecting everything°

Fragment of the 802.11n Draft Modulation/Coding Set (MCS)

				N _{ES}	ES N _{SD}		N _{CBPS}						
Bits 0-6										GI = 8	300ns	GI = 4	400ns
SIG1	Number				10	20	40	20MH	40MH	Rate in	Rate in	Rate in	Rate in
(MCS index)	of spatial streams	Modulation	Coding rate	20	40			z	z	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	1	52	108	52	108	6.5	13.5	7 2/9	15
1	1	QPSK	1/2	1	1	52	108	104	216	13	27	14 4/9	30
2	1	QPSK	3⁄4	1	1	52	108	104	216	19.5	40.5	21 2/3	45
3	1	16-QAM	1/2	1	1	52	108	208	432	26	54	28 8/9	60
4	1	16-QAM	3⁄4	1	1	52	108	208	432	39	81	43 1/3	90
5	1	64-QAM	2/3	1	1	52	108	312	648	52	108	57 7/9	120
6	1	64-QAM	3⁄4	1	1	52	108	312	648	58.5	121.5	65	135
7	1	64-QAM	5/6	1	1	52	108	312	648	65	135	72 2/9	150
8	2	BPSK	1/2	1	1	52	108	104	216	13	27	14 4/9	30
9	2	QPSK	1/2	1	1	52	108	208	432	26	54	28 8/9	60
10	2	QPSK	3⁄4	1	1	52	108	208	432	39	81	43 1/3	90
11	2	16-QAM	1/2	1	1	52	108	416	864	52	108	57 7/9	120
12	2	16-QAM	3⁄4	1	1	52	108	416	864	78	162	86 2/3	180
13	2	64-QAM	2/3	1	1	52	108	624	1296	104	216	115 5/9	240
14	2	64-QAM	3⁄4	1	1	52	108	624	1296	117	243	130	270
15	2	64-QAM	5/6	1	1	52	108	624	1296	130	270	144 4/9	300

Maximum rate in shipping products today.

MCS indices 16-31 cover 3- and 4-spatial-stream symmetric encodings. MCS

MCS indices 16-31 cover 3- and 4-spanal-succin symmetric asymmetric BROADCOM Connecting

encodings. everything^{*}

802.11n Frame Formats

• The 802.11n Draft defines a "greenfield" and a "mixed mode" format.

- "Greenfield" frames are used for channels and time periods during which all legacy devices are inactive.
- "Mixed mode" frames include a legacy prefix to trigger physical carrier sense of legacy devices.
- The "high-throughput" (HT) and legacy short training fields (HT-STF and L-STF) use the 802.11a short symbols with cyclic shifts on additional antennas.
 - Different shifts are used on HT and legacy portions.
- The HT long training fields use the 802.11a long symbols with cyclic shifts on additional antennas and multiplication by a matrix with orthogonal columns.
 - [1 1; 1 -1] for 2 spatial mapper inputs.
 - [1 -1 1 1; 1 1 -1 1; 1 1 1 -1; -1 1 1 1] for 3 and 4 spatial mapper inputs.
 - STBC 2x1 is defined in the spec. as "2 spatial-mapper inputs" (N_{SMI} = 2).

n is 1, 2, and 4 for N_{SMI} = 1, 2, and 4 and 4 for N_{SMI} = 3.

Connecting

HT-LTF Construction

• The HT-LTFs are constructed using the following base matrix:

$$P_{HTLTF} = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \end{pmatrix}$$

• The following table shows the number of HT-LTFs transmitted for frames using 1-4 spatial mapper inputs:

Number of spatial mapper inputs (N _{SMI})	Number of HT-LTFs
1	1
2	2
3	4
4	4

For 1-3 spatial streams, the bottom row(s) of the P_{HT-LTF} matrix shown above is (are) deleted.

BROADCO

Connecting

everything°

High-Throughput SIGNAL Field (HT-SIG)

- Each 4-usec symbol in the HT-SIG field is encoded as +90-degree rotated BPSK.
 - Distinguishing HT-SIG in from legacy transmissions is straightforward.

• HT-SIG1 is the first HT-SIG symbol transmitted in time.

Bandwidth Extension: 802.11n 20MHz Mode Spectral Mask

- For 802.11n 20MHz mode, the spectral mask floor is set to -45dBr.
- For 802.11n 20MHz mode, there are a total of 56 subcarriers (indices-28 through 28 with 0 excluded)

BROADCOM

- 8% increase in PHY rate relative to legacy A/G

connecting everything°

Bandwidth Extension: 802.11n 40MHz Mode Spectral Mask

- For 802.11n 40MHz mode, the spectral mask floor is set to -45dBr.
- For 802.11n 40MHz mode, there are a total of 114 subcarriers (indices -57 through +57 with 0 excluded)

Use of 108 data subcarriers increases PHY rate by 2.25x relative to legacy A/G
 Connecting
 e v e r y t h i n g^{*}

MAC Improvements: Why Aggregate Frames?

RTS/CTS/A-MPDU/IBA vs. DATA/ACK improvement

- At a 300 Mbps PHY rate, 60 Mbps throughput is the upper bound for a UDP-like flow with an unmodified DCF MAC.
- Throughput is around 180 Mbps (or better) with A-MPDU and Immediate BA

A-MPDU Aggregation

- Control and data MPDUs (MAC Protocol Data Units) can be aggregated
- PHY has no knowledge of MPDU boundaries

MIMO Power Save

- Allows RX to remain in steady state with one RX chain
- Modes: Disabled (fully MIMO capable), Static, Dynamic
- Dynamic MIMO Power save mode
 - Move to multiple RX chains when it gets RTS directed to it
 - Switch back after sequence ends
 - STA or AP can request partner to issue RTS in front of MIMO frame sequence
- Static MIMO Power save mode (Reduce MIMO capability)
 - STA requests AP to not send MIMO frames to it
- Signalled:
 - HT Capabilities Element
 - MIMO Power Save management action frame

Outline

- IEEE 802.11 Overview
- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

2x2 SDM In the Context of an OFDM Transmitter/Receiver

Receiver Types for SDM

• Zero Forcing (ZF)

- Simplest receiver type (covered in intro to SDM)
- Poor performance on channels with high condition number and at low SNR
 - Nrx > Nss in general for decent performance

MMSE-LE

- Incorporates knowledge of input SNR
- Far higher complexity than ZF but better performance at low SNR
- Poor performance on channels with high condition number
 - Nrx > Nss in general for decent performance

Interference-cancelling

- Suffers large losses from error propagation with one FEC encoder
 - Generally a poor choice for 802.11n

ML Detector

- Best performance achievable open-loop while also meeting rx-tx timing requirement
- Achieves full diversity
- High complexity without clever tricks

ML Detector and Complexity

2x2 MIMO system using M²-QAM modulation $\mathbf{r} = \mathbf{H}\mathbf{x} + \mathbf{n}$

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_{1,I} + jx_{1,Q} \\ x_{2,I} + jx_{2,Q} \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$

where

x is the transmitted symbol, with x_{k1} the in-phase component and x_{k0} the quadrature component of x_k , k = 1,2**H** is the channel matrix

BROADC

n is the noise: n_1 and n_2 are i.i.d. complex Gaussian random variables with mean 0 and variance σ^2 **r** is the received signal

Brute force MLD

- Log-likelihood ratio for bit k is $L_k = \frac{1}{\sigma^2} \left(\min_{\mathbf{x}|b_k=-1} \min_{\mathbf{x}|b_k=1} \right) \|\mathbf{r} \mathbf{H}\mathbf{x}\|^2$ Must compute $\|\mathbf{r} \mathbf{H}\mathbf{x}\|^2$ for each M⁴ possible combination of QAM symbols
- Requires 20M⁴ multiplies and 12M⁴ adds per subcarrier per 4D symbol
- Provides receiver diversity order 2 with two antenna outputs

Complexity of efficient approach (per subcarrier per 4D symbol):

- M²/8 + M/4 + 73 multiplies, [18 + 4log₂(M)]M²+78 adds
- Also need $4\log_2 M$ low-precision divisions for global scaling of each LLR by $1/K\sigma^2$
- Comparisons for 64-QAM (M=8)
 - Brute force ML -- 81920 multiplies and 49152 adds plus overhead ٠
 - Efficient ML -- 83 multiplies, 1998 adds including overhead ٠

Connecting

2x2 Nss=2 ML Performance – Channel D NLOS

BROADCOM®

test1_M4_R75_2x2_D_SL: 3.48 minutes, 100 channels X 20 pkts, avg 3.42 SNR pts per pkt, 0.06 dB resolution, avg 0.03 sec per demod test1_M4_R75_2x2_D_ZF: 136.83 minutes, 100 channels X 20 pkts, avg 3.41 SNR pts per pkt, 0.50 dB resolution, avg 1.20 sec per demod test1_M4_R75_2x2_D_LE: 140.64 minutes, 100 channels X 20 pkts, avg 3.49 SNR pts per pkt, 0.50 dB resolution, avg 1.21 sec per demod test1_M4_R75_2x2_D_LE: 140.64 minutes, 100 channels X 20 pkts, avg 3.49 SNR pts per pkt, 0.50 dB resolution, avg 1.21 sec per demod test1_M4_R75_2x2_D_LE: 172.67 minutes, 100 channels X 20 pkts, avg 3.24 SNR pts per pkt, 0.50 dB resolution, avg 1.60 sec per demod

2x2 Nss=2 Performance Summary

- 1. ZF-LE to MMSE-LE gap is more pronounced at lower SNR (smaller constellations at fixed error rate).
- 2. MMSE-LE/ZF-LE to ML gap is more pronounced on channels with higher condition number (more correlated paths) and at higher code rates (weaker code due to puncturing). *I.e.,* ML helps on poor channels at the highest data rates.

802.11n Radio Design Challenges and Baseband Solutions

• Receiver dynamic range

- Must deal with desired signals from roughly +5 to almost -100 dBm at the LNA input
- Must deal with blockers with carrier frequency offset as little as 25 MHz away and power as much as 35 dB greater than desired signal
- Requires high-dynamic-range AGC and sensitive carrier detector.

Transmit error vector magnitude (EVM)

- Must meet tight EVM requirements for highest OFDM rate (< -28 dB)
 - Requires minimizing phase noise and I-Q imbalance (nonlinear impairments)
 - Requires tight control of output power to avoid PA saturation region

Additional challenges for compact direct-conversion receivers

- Receiver DC offset
- Local oscillator (LO) feedthrough at transmitter
- I-Q imbalance

Connecting everything°

Using the Baseband to Detect/Mitigate LOFT and I-Q Imbalance in Tx

- Only LOFT shown for simplicity.
- Inject Sinusoid at F_{BB.}
- ADC+FFT to detect F_{BB} or 2*F_{BB}.
- LOFT at F_{BB} , I/Q imbalance at 2* F_{BB} .

everything°

Connecting

Post-calibration Phase Noise and EVM Results

The Need for a Flexible Transceiver

Outline

- IEEE 802.11 Overview
- The Indoor Wireless Channel
- Approaches to Improving Robustness and Data Rate
- More 802.11n Draft Details
- MIMO Transceiver Design Challenges and Solutions
- Broadcom's First MIMO Baseband IC

An Example: Programmable TX Engine

Baseband Block Diagram (Showing Radio Interconnections)

- Supported interfaces: JTAG (both for test and radio control), GPIOS, OTP interface, PCI/Cardbus, PCI-Express
- Maximum supported PHY rate: 270 Mbps (includes proprietary 256-QAM mode for test)
- Full hardware support for TKIP, AES and WEP
- Support for non-simultaneous activity in multiple bands (2.4-2.5 and 4.92-5.925 GHz)

Connecting

TCP Throughput and Range

- Close-range (10-ft.) over the air test at 5.24 GHz
- 2x2 system
- Max TCP throughput: 198 Mbps
- Average throughput > 193
 Mbps
- 2.442 GHz
- 2x2 system
- Lowest level of office parking garage (LOS up to ~100m)

3x3 with Selection Diversity

Baseband Plot and Summary

- Configurable static and dynamic power down modes (per RF path)
- Power consumption:
 - Driver down, PCI-E clkreq + ASPM: 29 mA from 3.3V supply*
 - Driver up, associated, either PM1 or PM2, PCI-E clkreq + ASPM: 37 mA from 3.3V supply*
 - Driver up, associated, PM0, PCI-E clkreq + ASPM: 470 mA from 3.3V supply*
 - Driver up, associated, full-rate 270 Mbps data, PM0: 820 mA from 3.3V supply*
- Sensitivity limits: -69 dBm at 270 Mbps (40 MHz bandwidth)
- Max. TCP throughput: 200 Mbps
- Operational temperature range: 0 to 75 deg C
- 3-16 dB (typ: 4-6 dB) gain over PER range of interest through ML detection, with additional gain possible through antenna selection
- 130 nm CMOS, 57.1 mm²
- Packages:
 - 256-ball FBGA (PCI)
 - 282-ball FBGA (PCI-E)

Connecting everything

* Including radio current (radio is ~193 mA off 3.3V supply when actively receiving a 40 MHz BW signal).

Acknowledgments

With many thanks to the following individuals who have contributed to the slides and/or reviewed the material:

Dr. Ed Frank

Dr. Nambi Seshadri

Connecting everything°

References

- [1] A. Behzad, "The Implementation of a High Speed Experimental Transceiver Module with an Emphasis on CDMA Applications", Electronic Research Labs, U.C. Berkeley, 1994.
- [2] T. S. Rappaport. Wireless Communications Principles and Practice, IEEE Press, 1996.
- [3] W.-J. Choi, et. al., "MIMO Technology for Advanced Wireless Local Area Networks", DAC, June 2005.
- [4] A. Behzad, et. al., "A Fully Integrated Multiband Direct Conversion CMOS Transceiver for MIMO WLAN Applications (802.11n)", ISSCC 2006.
- [5] IEEE 802.11n Draft 2.0, 2006.
- [6] A. Behzad, "WLAN Radio Design", ISSCC Tutorial, 2004.
- [7] D. Browne, "Experiments with an 802.11n Radio Testbed", UCLA/802.11n committee, July 2005.
- [8] T. H. Lee, The Design of CMOS RF ICs, Cambridge University Press, Jan. 1998.
- [9] D. Tse, et. al. Fundamentals of Wireless Communications, Cambridge University Press, 2005.
- [10] J. Medbo and P. Schramm, "Channel models for HIPERLAN/2," ETSI/BRAN document no. 3ERI085B.
- [11] A.A.M. Saleh and R.A. Valenzuela, "A statistical model for indoor multipath propagation," *IEEE JSAC,* vol. 5, 1987, pp. 128-137.
- [12] V. Erceg, et. al., "Indoor MIMO WLAN Channel Models", IEEE 802.11-03/161r0a, March 2003.
- [13] V. Tarokh, et. al., "Space-Time Codes for High Data Rate Wireless Communications: Performance Criterion and Code Construction", IEEE Trans. Info. Theory, vol. 44, 1998, pp. 744-765.

Connecting

everything

Thank you