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Why Are Digital Phase-Locked Loops Interesting?

PLLs are needed for a wide range of applications
- Communication systems (both wireless and wireline)y ( )
- Digital processors (to achieve GHz clocks)

Performance is important
- Phase noise can limit wireless transceiver performancePhase noise can limit wireless transceiver performance
- Jitter can be a problem for digital processors

The standard analog PLL implementation is 
problematic in many applications
- Analog building blocks on a mostly digital chip pose 

design and verification challenges
- The cost of implementation is becoming too high …

Can digital phase-locked loops offer 
excellent performance with a lower 

cost of implementation?
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Just Enough PLL Background …Just Enough PLL Background …



What is a Phase-Locked Loop (PLL)?
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VCO efficiently provides oscillating waveform with 
i bl fvariable frequency

PLL synchronizes VCO frequency to input reference 
frequency through feedback
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- Key block is phase detector

Realized as digital gates that create pulsed signals



Integer-N Frequency Synthesizers
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Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

U PLL t h i f d di id t t

N
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Use PLL to synchronize reference and divider output

Output frequency is digitally controlled



Fractional-N Frequency Synthesizers
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- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved



The Issue of Quantization Noise
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f
Increases linearity requirements of 
phase detector



Striving for a Better PLL ImplementationStriving for a Better PLL Implementation



Analog Phase Detection
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Average of pulsed waveform is applied to VCO input 9



Tradeoffs of Analog Approach
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Issue:  analog loop filter implementation is undesirable 10



Issues with Analog Loop Filter
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Filter caps:  leakage current, large area
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Going Digital …

out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO
Divider

Time out(t)ref(t) Digital

Staszewski et. al.,
TCAS II, Nov 2003

-to-

Digital

g

Loop Filter

DCO
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Digital loop filter:  compact area,  insensitive to leakage
Challenges: g
- Time-to-Digital Converter (TDC)
- Digitally-Controlled Oscillator (DCO)
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Classical Time-to-Digital Converter
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- Phase error is measured with delays and registers

Corresponds to a flash architecture 13



Impact of Limited Resolution and Delay Mismatch
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Integer-N PLL
- Limit cycles due to limited resolution (unless high ref noise)Limit cycles due to limited resolution (unless high ref noise)

Fractional-N PLL
- Fractional spurs due to non-linearity from delay mismatch 14



Examine Noise Performance:  Narrow-Bandwidth Case

Assumptions: 
- TDC ΔT= 20psTDC ΔT  20ps
- carrier freq.

= 3.6GHz 
- f f- reference freq.

= 50MHz
- PLL BW Total 

= 50kHz
- 3rd order ΔΣ

Noise

VCO noise dominates performance everywhere …
Don’t need very high TDC resolution
Δ−Σ fractional-N quantization noise is not an issue
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Examine Noise Performance:  Wide-Bandwidth Case

Assumptions: 
- TDC ΔT= 20psTDC ΔT  20ps 
- carrier freq.

= 3.6GHz 
- f f- reference freq.

= 50MHz
- PLL BW 

Total 
Noise

= 500kHz
- 3rd order ΔΣ

Noise dominated by TDC at low frequencies
Noise dominated by ΔΣ fractional-N noise at high 
frequencies
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To Meet High Performance Applications like GSM….

Assumptions: 
- TDC ΔT = 6psTDC ΔT  6ps
- carrier freq.

= 3.6GHz 
- f f- reference freq.

= 50MHz
- PLL BW Total 

= 500kHz
- 3rd order ΔΣ

(20dB lower)

Noise

N d 6 TDC l ti d 20dB ll ti f Δ Σ

(20dB lower) 

Need 6-ps TDC resolution and 20dB cancellation of Δ−Σ
fractional-N noise to achieve 500kHz bandwidth
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Can We Improve the Effective Resolution of
Time-to-Digital Conversion?
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Proposed Approach:  A Better Time-to-Digital Converter
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This is a simplified view
- We will need a few slides to properly explain this …

US Patent in progress… 



Consider Measurement of the Period of a Signal

Ring Oscillator
Vdd Input

x[0] x[1] x[2] x[3]

Counter
Reset

Oscillator

Count

Counter

RegisterInput

Count

O t Out 3 3 4 3Out Out 3 3 4 3

Use digital logic to count number of oscillator cycles 
during each input periodg p p
- Assume that oscillator period is much smaller than that 

of the input
Note: output count per period is not consistent
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Note:  output count per period is not consistent
- Depends on starting phase of oscillator within a given 

measurement period



Examine Quantization Error in Measurements

Ring Oscillator
Vdd Input

x[0] x[1] x[2] x[3]

Counter
Reset

Oscillator

Count

Counter

RegisterInput

Count

O Out 3 3 4 3Out Out 3 3 4 3

Quantization error varies according to starting phase 
of the oscillator within a given measurement periodof the oscillator within a given measurement period
- Leads to scrambling of the quantization noise

But there is something rather special about the 
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scrambling action …



A Closer Examination of Quantization Noise

Ring Oscillator
Vdd Input
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Calculate impact of quantization noise in time:
Out Out 3 3 4 3

Take Z-transform:

22
Quantization noise is first order noise shaped!



Relating to Phase Error Between Two Signals

Ring Oscillator
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Measurement of phase error between two signals
requires gaps between measurements
- What is the implication of such gaps?



The Impact of Non-Consecutive Measurements

Ring Oscillator
Vdd Input

x[0] x[2]

Counter
Reset

Oscillator

Count

Counter

RegisterInput

Count

O t Out 3 4

Error
q[0] q[2]

-q[1] -q[3]

Out Out 3 4

Consider measuring input period every other cycle
- Analogous to phase measurement between two signalsAnalogous to phase measurement between two signals

Key observation:
- Quantization noise is no longer first order noise shaped!

24
Is there a way to restore noise shaping?



Proposed GRO TDC StructureProposed GRO TDC Structure



A Gated Ring Oscillator (GRO) TDC

Ring Oscillator

Phase Error[1] Phase Error[2]
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Enable ring oscillator only during measurement intervals
- Hold the state of the oscillator between measurements

Quantization error becomes first order noise shaped!Quantization error becomes first order noise shaped!
- e[k] = Phase Error[k] + q[k] – q[k-1]
- Averaging dramatically improves resolution! 26



Simple gated ring oscillator inverter-based core

Enabled Ring Oscillator Disabled Ring Oscillator

(a) (b)

Gate the oscillator by switching
the inverter cores to the 
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Improve Resolution By Using All Oscillator Phases

Ring Oscillator
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Perrott VLSI 2007
e[k] 11 10

Raw resolution is set by inverter delay
Effective resolution is dramatically improved by averaging 28



GRO TDC Also Shapes Delay Mismatch
Enable

Measurement 1

Enable

Measurement 2

Enable

Measurement 3

Enable

Measurement 3

Barrel shifting occurs through delay elements across

Measurement 4

Barrel shifting occurs through delay elements across 
different measurements
- Mismatch between delay elements is first order shaped! 29



First Generation GRO Prototype

15 Stage Gated Ring Oscillator

enable

enable(t)
S Q
R

Variable
Delay

enable

Logic error[k]

e ab e

GRO implemented as a custom 
0 13 CMOS IC0.13u CMOS IC
External setup consists of signal 
source and variable delay

30

- Test issue:  variable delay is 
nonlinear



Measured GRO Results Confirm Noise Shaping
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Next Generation GRO:  Multi-path oscillator concept

Single Input
Single Output

Multiple Inputs
Single Output

Use multiple inputs for each delay element instead of one
Allow each stage to optimally begin its transition based on 
i f ti f th ti GRO h t tinformation from the entire GRO phase state 
Key design issue is to ensure primary mode of oscillation
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Multi-path inverter core

Lee, Kim, Lee
JSSC 1997JSSC 1997

Mohan, et. al., 
CICC 2005



Proposed Multi-Path Gated Ring Oscillator TDC

Hsu, Straayer, Perrott
ISSCC 2008

Oscillation frequency near 2GHz with 47 stages…
Reduces effective delay per stage by a factor of 5-6! 

ISSCC 2008

y p g y
Represents a factor of 2-3 improvement compared to previous 
multi-path oscillators

34



Prototype 0.13μm CMOS Multi-Path GRO-TDC

Timing 
Generation

Enable 47-stage
Gated Ring 
Oscillator 

Start

Stop

State
Register

Z1-47

Start

CLK

Measurement
Cells

Start

Stop

Enable

1 72 3 4 5 6

Out
Adder

CLK

Straayer, Perrott

Two implemented versions:
- 8-bit, 500Msps

y ,
VLSI 2008

- 11-bit, 100Msps version
2-21mW power consumption depending on input duty cycle



Measured noise-shaping of multi-path GRO
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Can We Reduce Sigma-Delta
Quantization Noise Caused by Divider Dithering?
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The Nature of the Quantization Noise Problem

PFD Loop
Filter

Ref Out

Div
N/N+1

M-bit 1-bit

Div

ΔΣFrequency ΔΣ

 Modulator
Frequency
Selection

Output
Spectrum

Quantization
Noise Spectrum

F

Noise

Frequency
Selection

pp

Fout

PLL dynamicsΔΣ

Increasing PLL bandwidth increases impact of ΔΣIncreasing PLL bandwidth increases impact of ΔΣ
fractional-N noise
- Cancellation offers a way out! 38



Previous Analog Quantization Noise Cancellation

Phase error due to ΔΣ is predicted by accumulating 
ΔΣ quantization error
Gain matching between PFD and D/A must be precise

Matching in analog domain limits performance
39



Proposed All-digital Quantization Noise Cancellation

Hsu Straayer Perrott

Scale factor determined by simple digital correlation

Hsu, Straayer, Perrott
ISSCC 2008

Scale factor determined by simple digital correlation 
Analog non-idealities such as DC offset are completely 
eliminated 40



Details of Proposed Quantization Noise Cancellation

Correlator out is accumulated 
and filtered to achieve scale factor
- Settling time chosen to be around 

10 us
See analog version of this 
technique in Swaminathan et.al., 
ISSCC 2007 41



Proposed Digital Wide BW Synthesizer

Gated-ring-oscillator (GRO) TDC achieves low in-band 
noisenoise
All-digital quantization noise cancellation achieves low 
out-of-band noise
Design goals:Design goals: 
- 3.6-GHz carrier, 500-kHz bandwidth- <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset 42



Overall Synthesizer Architecture

Note:  Detailed behavioral simulation model available at 
http://www.cppsim.com
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Dual-Port LC VCO

Frequency tuning:
- Use a small 1X varactor to minimize noise sensitivityUse a small 1X varactor to minimize noise sensitivity
- Use another 16X varactor to provide moderate range
- Use a four-bit capacitor array to achieve 3.3-4.1 GHz range 44



Digitally-Controlled Oscillator with Passive DAC

1X varactor minimizes 
noise sensitivitynoise sensitivity
16X varactor provides 
moderate range
A f bit it

Goals of 10-bit DAC
- Monotonic

A four-bit capacitor 
array covers 3.3-4.1GHz

- Minimal active circuitry and no transistor bias currents
- Full-supply output range 45



Operation of 10-bit Passive DAC (Step 1)

5-bit resistor ladder; 5-bit switch-capacitor array
Step 1: Capacitors Charged
- Resistor ladder forms VL = M/32•VDD and VH = (M+1)/32•VDD, 

where M ranges from 0 to 31where M ranges from 0 to 31
- N unit capacitors charged to VH, and (32-N) unit capacitors 

charged to VL 46



Operation of 10-bit Passive DAC (Step 2)

Step 2: Disconnect Capacitors from Resistors, Then p
Connect Together
- Achieves DAC output with first-order filtering
- Bandwidth = 32• C /(2π•Cl d)•50MHzBandwidth  32  Cu/(2π Cload) 50MHz

Determined by capacitor ratio
Easily changed by using different Cload 47



Now Let’s Examine Divider …

Issues: 
- GRO range must span entire reference period during 

initial lock-in
48



Proposed Divider Structure

Divide value 
=N0+N1+N2+N3

Resample reference with 4x division frequency
- Lowers GRO range to one fourth of the reference period 49



Proposed Divider Structure (cont’d)

Place ΔΣ dithered edge away from GRO edge
- Prevents extra jitter due to divide-value dependent delay 50



Dual-Path Loop Filter

Step 1 resetStep 1: reset
Step 2: frequency acquisition
- Vc(t) variesVc(t) varies
- Vf(t) is held at midpoint

Step 3: steady-state lock conditions
- Vc(t) is frozen to take quantization noise away
- ΔΣ quantization noise cancellation is enabled
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Fine-Path Loop Filter

Equivalent to an analog lead-lag filter
- Set zero (62.5kHz) and first pole (1.1MHz) digitally( ) p ( ) g y
- Set second pole (3.1MHz) by capacitor ratio

First-order ΔΣ reduces in-band quantization noise 52



Linearized Model of PLL Under Fine-Tune Operation
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Standard lead-lag filter topology but implemented in 

1

T

1

Nnom
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Sta da d ead ag te topo ogy but p e e ted
digital domain
- Consists of accumulator plus feedforward path
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Same Technique Poses Problems for Coarse-Tune

DAC thermal noise impacts p
performance due to the 
higher coarse VCO gain
- Can we somehow lowerCan we somehow lower 

the DAC bandwidth?
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Fix: Leverage the Divider as a Signal Path

Bypass to divider for feed-
forward path allows coarseforward path allows coarse 
DAC bandwidth to be 
dramatically reduced! 
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Linearized Model of PLL Under Coarse-Tune Operation

e[k]T
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Routing of signal path into Sigma-Delta controlling 
the divider yields a feedforward path

nom

y
- Adds to accumulator path as both signals pass back 

through the divider
- Allows reduction of coarse DAC bandwidthAllows reduction of coarse DAC bandwidth

Noise impact of coarse DAC on VCO is substantially 
lowered
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Die Photo

0.13-μm CMOS
Active area: 0.95 mm2Active area: 0.95 mm
Chip area: 1.96 mm2

VDD: 1.5V
Current: 
- 26mA (Core)
- 7mA (VCO output          ( p

buffer at 1.1V)

GRO-TDC:GRO-TDC:
- 2.3mA
- 157X252 um2
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Power Distribution of Prototype IC

DAC
Divider

1.4mW

GRO-TDC

Ref. Buffer

    3.4mW
(7%)

3.0mW

2.8mW

    (7%)

(6%)
   (3%)

   21.0mW
     (46%)

Digital

VCO     6.8mW
     (15%)

      (7%)

    7.7mW
     (17%)

g

Notice GRO and digital quantization noise

VCO Pad Buffer

 Total Power: 46.1mW 

Notice GRO and digital quantization noise 
cancellation have only minor impact on power 
(and area)
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Measured Phase Noise at 3.67GHz

Suppresses 
quantization q
noise by 
more than  
15 dB15 dB
Achieves 
204 fs      
(0 27 degree)(0.27 degree) 
integrated 
noise (jitter)
Reference 
spur: -65dBc
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Calculation of Phase Noise Components
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See wideband digital synthesizer tutorial available at 
http://www.cppsim.com 60



Measured Worst Spurs over Fifty Channels

55
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-75

3.62 3.63 3.64 3.65 3.66 3.67

16.2us

frequency (GHz)
Tested from 3.620 GHz to 3.670 GHz at intervals of 1 MHz
- Worst spurs observed close to integer-N boundaryWorst spurs observed close to integer N boundary 

(multiples of 50 MHz)
-42dBc worst spur observed at 400kHz offset from boundary 
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Conclusions

Digital Phase-Locked Loops look extremely promising 
for future applications
- Very amenable to future CMOS processes
- Excellent performance can be achieved

A low-noise, wide-bandwidth digital ΔΣ fractional-N 
frequency synthesizer is achieved with
- High performance noise shaping GRO TDC- High performance noise-shaping GRO TDC
- Quantization noise cancellation in digital domain

Key result:  < 250 fs integrated noise with 500 kHz 
bandwidth

Innovation of future digital PLLs will involve joint 
circuit/algorithm development
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