High Performance Digital Fractional-N Frequency Synthesizers

Michael Perrott October 16, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved.

Why Are Digital Phase-Locked Loops Interesting?

- PLLs are needed for a wide range of applications
 - Communication systems (both wireless and wireline)
 - Digital processors (to achieve GHz clocks)
- Performance is important
 - Phase noise can limit wireless transceiver performance
 - Jitter can be a problem for digital processors
- The standard analog PLL implementation is problematic in many applications
 - Analog building blocks on a mostly digital chip pose design and verification challenges
 - The cost of implementation is becoming too high ...

Can digital phase-locked loops offer excellent performance with a lower cost of implementation? Just Enough PLL Background ...

What is a Phase-Locked Loop (PLL)?

- VCO efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as *digital gates* that create pulsed signals

Integer-N Frequency Synthesizers

- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

Fractional-N Frequency Synthesizers

Dither divide value to achieve fractional divide values

PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

The Issue of Quantization Noise

Striving for a Better PLL Implementation

Analog Phase Detection

- Pulse width is formed according to phase difference between two signals
- Average of pulsed waveform is applied to VCO input

Tradeoffs of Analog Approach

- Benefit: average of pulsed output is a continuous, linear function of phase error
- Issue: analog loop filter implementation is undesirable

Issues with Analog Loop Filter

- Charge pump: output resistance, mismatch
- Filter caps: leakage current, *large area*

Going Digital ...

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Classical Time-to-Digital Converter

- Resolution set by a "Single Delay Chain" structure
 - Phase error is measured with delays and registers
- Corresponds to a flash architecture

Impact of Limited Resolution and Delay Mismatch

- Limit cycles due to limited resolution (unless high ref noise)
- Fractional-N PLL
 - Fractional spurs due to non-linearity from delay mismatch

Examine Noise Performance: Narrow-Bandwidth Case

- VCO noise dominates performance everywhere …
- Don't need very high TDC resolution
- Δ–Σ fractional-N quantization noise is not an issue

Examine Noise Performance: Wide-Bandwidth Case

- Noise dominated by TDC at low frequencies
- Noise dominated by $\Delta\Sigma$ fractional-N noise at high frequencies

To Meet High Performance Applications like GSM....

Need 6-ps TDC resolution and 20dB cancellation of $\Delta - \Sigma$ fractional-N noise to achieve 500kHz bandwidth Can We Improve the Effective Resolution of Time-to-Digital Conversion?

Proposed Approach: A Better Time-to-Digital Converter

- This is a simplified view
 - We will need a few slides to properly explain this ...

Consider Measurement of the Period of a Signal

- Use digital logic to count number of oscillator cycles during each input period
 - Assume that oscillator period is much smaller than that of the input
- Note: output count per period is not consistent
 - Depends on starting phase of oscillator within a given measurement period

Examine Quantization Error in Measurements

- Quantization error varies according to starting phase of the oscillator within a given measurement period
 - Leads to scrambling of the quantization noise
- But there is something rather special about the scrambling action ...

A Closer Examination of Quantization Noise

Calculate impact of quantization noise in time:

$$put[k] = x[k] + error[k]$$

= $x[k] + q[k] - q[k-1]$

Take Z-transform:

$$Out(z) = X(z) + (1 - z^{-1})Q(z)$$

Quantization noise is first order noise shaped!

Relating to Phase Error Between Two Signals

- Measurement of phase error between two signals requires gaps between measurements
 - What is the implication of such gaps?

The Impact of Non-Consecutive Measurements

- Consider measuring input period every other cycle
 - Analogous to phase measurement between two signals
- Key observation:
 - Quantization noise is no longer first order noise shaped!

Is there a way to restore noise shaping?

Proposed GRO TDC Structure

A Gated Ring Oscillator (GRO) TDC

Enable ring oscillator only during measurement intervals

- Hold the state of the oscillator between measurements
- Quantization error becomes first order noise shaped!
 - e[k] = Phase Error[k] + q[k] q[k-1]
 - Averaging dramatically improves resolution!

Simple gated ring oscillator inverter-based core

Disabled Ring Oscillator

(b)

Gate the oscillator by switching the inverter cores to the power supply

Improve Resolution By Using All Oscillator Phases

Raw resolution is set by inverter delay

Effective resolution is dramatically improved by averaging 28

GRO TDC Also Shapes Delay Mismatch

- Barrel shifting occurs through delay elements across different measurements
 - Mismatch between delay elements is first order shaped!

First Generation GRO Prototype

- GRO implemented as a custom 0.13u CMOS IC
- External setup consists of signal source and variable delay
 - Test issue: variable delay is nonlinear

Measured GRO Results Confirm Noise Shaping

Next Generation GRO: Multi-path oscillator concept

- Use multiple inputs for each delay element instead of one
- Allow each stage to optimally begin its transition based on information from the entire GRO phase state
- Key design issue is to ensure primary mode of oscillation

Multi-path inverter core

Proposed Multi-Path Gated Ring Oscillator TDC

Hsu, Straayer, Perrott ISSCC 2008

- Oscillation frequency near 2GHz with 47 stages...
- Reduces effective delay per stage by a factor of 5-6!
- Represents a factor of 2-3 improvement compared to previous multi-path oscillators

Prototype 0.13µm CMOS Multi-Path GRO-TDC

Straayer, Perrott VLSI 2008

- Two implemented versions:
 - 8-bit, 500Msps
 - 11-bit, 100Msps version
- 2-21mW power consumption depending on input duty cycle

Measured noise-shaping of multi-path GRO

- Data collected at 50Msps
- More than 20dB of noise-shaping benefit
- 80fs_{rms} integrated error from 2kHz-1MHz
- Floor primarily limited by 1/f noise (up to 0.5-1MHz)

Can We Reduce Sigma-Delta Quantization Noise Caused by Divider Dithering?

The Nature of the Quantization Noise Problem

- Increasing PLL bandwidth increases impact of $\Delta\Sigma$ fractional-N noise
 - Cancellation offers a way out!

Previous Analog Quantization Noise Cancellation

- Phase error due to ΔΣ is predicted by accumulating ΔΣ quantization error
- Gain matching between PFD and D/A must be precise

Matching in analog domain limits performance

Proposed All-digital Quantization Noise Cancellation

- Scale factor determined by simple digital correlation
- Analog non-idealities such as DC offset are completely eliminated

Details of Proposed Quantization Noise Cancellation

Proposed Digital Wide BW Synthesizer

- Gated-ring-oscillator (GRO) TDC achieves low in-band noise
- All-digital quantization noise cancellation achieves low out-of-band noise
- Design goals:
 - **3.6-GHz carrier**, **500-kHz bandwidth**
 - <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset</p>

Overall Synthesizer Architecture

Note: Detailed behavioral simulation model available at http://www.cppsim.com

Dual-Port LC VCO

- Frequency tuning:
 - Use a small 1X varactor to minimize noise sensitivity
 - Use another 16X varactor to provide moderate range
 - Use a four-bit capacitor array to achieve 3.3-4.1 GHz range

Digitally-Controlled Oscillator with Passive DAC

- Goals of 10-bit DAC
 - Monotonic

- - 1X varactor minimizes noise sensitivity
 - 16X varactor provides moderate range
 - A four-bit capacitor array covers 3.3-4.1GHz
- Minimal active circuitry and no transistor bias currents
- Full-supply output range

Operation of 10-bit Passive DAC (Step 1)

- 5-bit resistor ladder; 5-bit switch-capacitor array
- Step 1: Capacitors Charged
 - Resistor ladder forms V_L = M/32•V_{DD} and V_H = (M+1)/32•V_{DD}, where M ranges from 0 to 31
 - N unit capacitors charged to V_H, and (32-N) unit capacitors charged to V_L

Operation of 10-bit Passive DAC (Step 2)

Step 2: Disconnect Capacitors from Resistors, Then Connect Together

- Achieves DAC output with first-order filtering
- **Bandwidth = 32** $C_u/(2\pi \cdot C_{load}) \cdot 50 \text{MHz}$
 - Determined by capacitor ratio
 - Easily changed by using different C_{load}

Now Let's Examine Divider ...

Issues:

 GRO range must span entire reference period during initial lock-in

Proposed Divider Structure

Resample reference with 4x division frequency

Lowers GRO range to one fourth of the reference period

Proposed Divider Structure (cont'd)

Place ΔΣ dithered edge away from GRO edge

Prevents extra jitter due to divide-value dependent delay

Dual-Path Loop Filter

- Step 1: reset
- Step 2: frequency acquisition
 - V_c(t) varies
 - V_f(t) is held at midpoint
- Step 3: steady-state lock conditions
 - V_c(t) is frozen to take quantization noise away
 - ΔΣ quantization noise cancellation is enabled

Fine-Path Loop Filter

- Equivalent to an analog lead-lag filter
 - Set zero (62.5kHz) and first pole (1.1MHz) digitally
 - Set second pole (3.1MHz) by capacitor ratio
- First-order ΔΣ reduces in-band quantization noise

Linearized Model of PLL Under Fine-Tune Operation

- Standard lead-lag filter topology but implemented in digital domain
 - Consists of accumulator plus feedforward path

Same Technique Poses Problems for Coarse-Tune

Fix: Leverage the Divider as a Signal Path

Linearized Model of PLL Under Coarse-Tune Operation

- Routing of signal path into Sigma-Delta controlling the divider yields a feedforward path
 - Adds to accumulator path as both signals pass back through the divider
 - Allows reduction of coarse DAC bandwidth
 - Noise impact of coarse DAC on VCO is substantially lowered

Die Photo

Power Distribution of Prototype IC

Notice GRO and digital quantization noise cancellation have only minor impact on power (and area)

Measured Phase Noise at 3.67GHz

Suppresses quantization noise by more than 15 dB

- Achieves
 204 fs
 (0.27 degree)
 integrated
 noise (jitter)
 - Reference spur: -65dBc

Calculation of Phase Noise Components

See wideband digital synthesizer tutorial available at http://www.cppsim.com

Measured Worst Spurs over Fifty Channels

- Tested from 3.620 GHz to 3.670 GHz at intervals of 1 MHz
 - Worst spurs observed close to integer-N boundary (multiples of 50 MHz)
- -42dBc worst spur observed at 400kHz offset from boundary

Conclusions

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- A low-noise, wide-bandwidth digital ΔΣ fractional-N frequency synthesizer is achieved with
 - High performance noise-shaping GRO TDC
 - Quantization noise cancellation in *digital* domain
- Key result: < 250 fs integrated noise with 500 kHz bandwidth

Innovation of future digital PLLs will involve joint circuit/algorithm development