Next-Generation Compact Modeling* Robert W. Dutton and Chang-Hoon Choi

Stanford University

Motivation--Moore's Law scaling has led to ultra-short channel length devices that, while giving multi-GHz performance, present a host of new modeling challenges, especially for analog devices in SoC integration.

•There are a range of "**other**" issues that face compact modeling of nanometer scale technology, including **parasitic effects** related to:

✓ gate leakage,

✓ substrate coupling

✓ thermal limitations

•There are also issues of **intrinsic device scaling**; high-level language (HLL) specifications for models that facilitate **model portability** is one example.

*Support from SRC(TI); CIS(Infineon, Philips); MARCO(MSD)

Outline*

• Intrinsic Devices:

- Challenges of MOS Scaling
 - Gate Current, QM Effects... (C.-H. Choi, PhD 2002)
- RF Modeling
 - Non-Quasi-Static & Substrate Effects (J. Jang PhD 2004)
 - Thermal Noise (**T. Oh**, PhD 2004)
- Thermal Modeling
 - Self Heating in Nano-Devices (E. Pop)
 - RF Power MOS (C. Ito)
- Model Portability
- Summary and Discussion

Scaling Challenges of CMOS

Cross-section of a 90nm N-channel MOS transistor, including details of gate, sidewalls and substrate doping profiles (SDE, channel/well implants, halo doping)

Threshold, Sub-Threshold & I_{on}/I_{off}

Semi-Log plot of Drain Current (I_{ds}) versus Gate Voltage (V_{gs}) with Drain Voltage (V_{ds}) as a parameter for three channel length NMOS devices.

Intrinsic MOS, Gate, Body/Bulk and Parasitic Substrate Capacitance/Resistance Effects

Channel Charge and Carrier Mobility!

First-order model of how MOS inversion layer channel current ($I_{channel}$) depends of gate-induced charge and carrier velocity. The physical parameters are C_{G} and $\mu_{channel}$.

Scaling of MOS Performance

Mobility Degradation for High-k Gate Stacks

- Various mechanisms responsible for degradation:
 - Remote polar optical phonon scattering
 - Remote charge scattering
 - Remote surface roughness
 - Phase separation

• Universal mobility curve

- Effective mob. dep. on <u>effective field</u>; good for acoustic phonon scatt. and surface roughness scatt.
- Deviation at low inversion due to Coulomb scatt. for SiO₂
- More severe deviation for high-k
 - Aggravated surface roughness
 - Stronger Coulombic scatt. at low and medium inversion

+ Gate Tunneling...

Poly-Gate and QM Effects

Measured and simulated curves of MOS gate capacitance vs. gate voltage for NMOS, poly-silicon gate, 2nm oxide thickness. Curves compare impact of QM effects

QM Effects on Channel Charge

Surface region of bulk MOS device that shows: well potential created by the conduction band energy (- * -); discrete energy levels imposed by QM (E0, E1...); electron distribution associated with E0 level; electron distribution for classical theory (- - -)

QM "Poly Depletion"

Electron distributions in the n-type poly-silicon gate of an NMOS transistor, based on classical theory versus that for a quantum-based (QM) solution for charge. The peak region shows a "QM depletion" resulting in V_{th} and C-V shifts

Implications of QM Poly Depletion (Fully Depleted Double-Gate-SOI)

2D simulations of QM poly depletion effects for two drain bias conditions. Results show significant gate depletion (left-side) and lateral effects that

Results show significant gate depletion (left-side) and lateral effects that influence drain-induced barrier lowering (right-side)

Threshold and Sub-Threshold Effects

C-V and I-V characteristics for a 20nm channel length DG SOI transistor, comparing QM effects in the poly gate region with idealized (metal-like) gate.

Gate Current (Tunneling) vs. t_{ox}

Simulated and measured data for gate current in an MOS capacitor as a function of gate oxide thickness using NEMO; data provided by Hewlett-Packard.

Serious Limits to Scaling t_{ox}

Measured and equivalent circuit simulations of imaginary component of input admittance, large area MOS capacitor structure with oxide thickness as parameter.

Drain Current with I_{sub}

• Distorted drain current (I_d) from the real drain current (I_{d0}) due to gate current (I_g) : $I_{d0}=I_d+0.5I_g$ (Zeitzoff, EDL'03)

• But, note that $I_{d0} = I_d + 0.5(I_g - I_{sub})$ in the presence of I_{sub}

Correction of Drain Current

- Over-estimation of corrected drain current (I_{d0}) for $I_{d0}=I_d+0.5I_g$ expression
- New expression: $I_{d0} = I_d + 0.5(I_g I_{sub})$ in the presence of I_{sub}

Correction of Charge-Pumping Current

• Measurement of true inversion charge (N_{inv}) based on device symmetry (Keber, VLSI tech.'03)

• Elimination of N_{tun} from N_{inv} for high-K or thin oxide

Small-Signal Modeling of RF MOSFET

Jaejune Jang PhD 2004

Center for Integrated Systems Stanford University

Non-Quasi-Static Effect

- Quasi-Static is when each terminal responds instantaneously to applied signal
- If switching time of v_g is compatible with transit time of inversion charge, QS approximation fails

NQS Effect on C_{ggeff} and G_{ggeff}

- Long channel device falls off at lower frequencies
- $G_{ggeff} \sim f^2$: directly proportional to gate induced noise
- f_{NQS} is defined as a frequency when NQS start

Bias Dependency of f_{NOS}

- L_{eff} is determined by charge sharing b/w source and drain
- Bias dependency of f_{NQS} is primarily function of L_{eff} , mobility (μ) and, saturation velocity (v_{sat})

y_{gs} and y_{gd}

- \bullet y_{gs} and y_{gd} can be represented as series RC
- $C_{gs}r_{gs}/C_{gd}r_{gd}$ determines f_{NQS}

L = 1.2 um (measured)

Capacitance vs. Channel Length

- All 16 capacitances agree well with charge-based capacitances for long channel device
- Short channel capacitances show quite different behavior
- This is due to existence of substrate resistance (R_{sub})

Impact of R_{sub} on Terminal Admittance

$$C_{sdeff} = C_{sd} + \frac{R_{sub}g_{mb}}{1 + \omega^2 R_{sub}^2 C_{bb}^2} C_{bd}$$

$$g_{sdeff} = g_{sd} + \frac{\omega^2 R_{sub}^2 g_{mb}}{1 + \omega^2 R_{sub}^2 C_{bb}^2} C_{bb} C_{bd}$$

As L decreases, R_{sub} and g_{mb} increase

- R_{sub} is amplified through g_{mb}
- Impacts following y-parameters $(y_{dd}, y_{ds}, y_{db}, y_{dg}, y_{ss}, y_{sg}, y_{sg}, y_{sd}, and y_{sb})$

Bias Dependency of Substrate Network

Saturation Region

- It's been reported that substrate network is bias independent \rightarrow not true
- C_{s_s} > C_{s_d} & r_{s_s} < r_{s_d} in saturation region
 Surface area of effective electrode is bias dependent due to charge sharing

$y_{bs} \& y_{bd}$

- C_{sub} and R_{sub} is a strong function of bias
- \bullet C_{bs} and C_{bd} are also strongly bias dependent

Noise Analysis of deepsubmicron MOSFETs

Tae-young Oh PhD 2004

Center for Integrated Systems Stanford University

MOS Channel Length and Excess Noise

• Higher speed devices offer great promise for RF

 However, the changes in intrinsic noise of scaled MOS devices is not clearly understood

- The amount and source for this excess noise were still uncertain
- High electric field in short channel MOS device should have relation with this excess noise

- Simulation has to handle this carefully (**D**rift-**D**iffusion vs. **H**ydro-**D**ynamic models)

Channel Length vs. Drain Noise Parameters

NMOS Transistor

Measurement vs. Modeling--0.18µm

0.18 μm Channel Length MOS--Measurement and Simulation at 5 GHz (Data from Philips (Scholten, IEDM 02))

Two-Lump Impedance Field Model

First-Order View of Impedance Field

Comparison of A(x)--1µm vs 0.18µm

•Effects on noise in short-channel devices more pronounced

Field-effects impact source-end noise, the most critical area base on impedance field analysis
Clear differences between Drain- and Gate-current noise contributions

Gate Current Noise--Short Channel MOS

 Noise from high energy carriers has direct impact on gate noise in short channel MOS devices.

Self-Heating and Scaling of Silicon Nano-Transistors

Eric Pop PhD Orals 2004

Center for Integrated Systems Stanford University

2-D: Thin Body SOI ($L_g = 18$ nm)

Ultra-Thin Body SOI Scaling

Eric Pop, Stanford PhD 2004

Thermal Modeling for SOI

- "Baseline" (ITRS power scaling): $t_{sd}=2t_{si}$, $L_{ex}=L_g/2$
- "Low power" case uses proposed quadratic power scaling guidelines--reduce power, consistent with volume

Proposed Power (I·V) Scaling

ITRS power scaling non-uniform ullet

Quadratic scales power closer with device dimension (and volume) scaling •

 $(L_g \text{ in } nm)$

- Device temperatures near-isothermal •
- 250 W/m power budget \rightarrow V_{dd} = 0.25 V @ I_{on} = 1000 A/m •

SOI-GOI Gate-Delay Comparisons

Stanford--E. Pop et al (IEDM 2004)

Bottom-Line:

GOI can achieve lower delays; improved drive current results in lower heat generation

- Ge-O-I \rightarrow assume $t_{Ge} = 3/4t_{Si}$ where $t_{Si} = L_g/4$
- Si more k_{thin} reduction due to larger phonon mean free path
- Ge has 2x mobility advantage, 40% lower V_{dd}
- Delay not lowered for S/D raised beyond $\sim 3 \text{ x t}_{\text{film}}$

Proposed Methodology* (*RF Power MOS Devices*)

- Minimize fabricationcharacterization time by using device simulation
- Generate table-based model from device simulation for use in circuit simulation
- Resulting model:
 - "Black box" model
 - Easy enough to generate for quick evaluation of design changes

Thermal Characteristics (Simulation Results)

- RF power amplifiers require temperature-dependent models
- Implemented using several tables extracted at different temperatures
- Characteristics for arbitrary temperatures may be linearly interpolated between tables

DC Characteristics (Model vs. Measurements*)

- Isothermal (pulsed) currentvoltage (IV) measurements and simulations
- IV characteristics match well between model and measurement
- Small discrepancy possibly due to differences between simulation doping profile and actual device profile

Methodology for Modeling

- Compact models are becoming more abundant and complex
- Implementation is becoming bottleneck and potential weak link
- Cross-platform model portability is important to technology deployment
- HLD Languages (Verilog/VHDL...) offer powerful solution

Models Implemented in Verilog-A

- BSIM3, BSIM4.3, BSIMSOI
- HiSIM, Shur-RPI TFT, EKV
- HICUM
- SPICE Gummel-Poon, Diode, JFET
- Philips MEXTRAM, MOS 9, MOS 11
- Triquent, Curtice, Parker-Skellern, Raytheon-Statz, Angelov
- UCSD (Aspeck) GaAs HBT

Multiple Simulators, Single Model

- Compiled Verilog-A devices can be shared among diverse simulators
- Same compiled object file linked to each simulator
- Develop in one simulator, same results in all simulators

Example: Adding Self-heating to BSIM3

- Adding a thermal circuit to a compact model can be a complicated project, as all of the derivatives with respect to the temperature must be provided to the simulator.
- Since Verilog-A does that for the developer, the additional lines of code are minimal, typically just a few dozen, including the parameter definition.

Electrical Model for Self-heating

- An R-C circuit is added to the intrinsic model
- The current source represents the power dissipated in the device
- The voltage across the thermal resistance and thermal capacitance represents the associated temperature rise
- This temperature rise is fed back to the device model

Verilog-A Implementation

• The code change is minimal

DC I-V Results

• The (standard) BSIM3 compared to the BSIM3 with selfheating

Summary and Conclusions

- Development of scaled-MOS compact models face many challenges: intrinsic and parasitic device effects and "other" challenges:
 - Intrinsic Limits--mobility, gate current, "leakage"
 - RF Issues--NQS, substrate effects, noise
 - Thermal Issues--new models, scaling laws
- Methodology for compact model deployment shifting to HLL approach and compilers; "handcoded" models (for "efficiency") inherently limit portability
- "We live in interesting times (still!)"

Back-up Slides

- Power RF Table-based model (Root)
- Silicon RTD--physics and Verilog-A model

Resonant Tunneling

- Higher gate tunneling in DG than SG (bulk) MOS
- Simulated resonant gate tunneling current for thin layer DG SOI by using NEMO: possibly Si-based resonant tunneling diodes (RTD)

Advanced Device Development

- Verilog-A provides a simple way to implement new devices
- Resonant tunneling diode

`include "disciplines.vams"
module rtd(anode,cathode);
inout anode, cathode; electrical anode, cathode;
parameter real c1=8.0e-4; parameter real c2=23.5; parameter real c3=-28.0; parameter real c4=-33.0; parameter real c5=0.0e-7; parameter real c5=0.0e-6; parameter real m=1.0; parameter real n=10.0;
real v;
analog begin
v=V(anode,cathode); I(anode, cathode) <+ c1*v*(tanh(c2*v+c3) - tanh(c2*v+c4)) · c5*pow(v,m) + c6*pow(v,n);
end
endmodule

Table-Based Models

- Table lookup + interpolation
- Separate models can easily be generated for different designs
 - Possible due to efficient model generation
- Root Model
 - Consists of 5 variables over the V_g - V_d space

$$-$$
 I_{gs}, I_{ds}, Q_g, Q_d, I_{dh}

$$\nabla Q_{G} = \frac{\operatorname{Im}\{y_{11}\}}{\omega} \overrightarrow{v_{gs}} + \frac{\operatorname{Im}\{y_{12}\}}{\omega} \overrightarrow{v_{ds}}$$
$$\nabla Q_{D} = \frac{\operatorname{Im}\{y_{21}\}}{\omega} \overrightarrow{v_{gs}} + \frac{\operatorname{Im}\{y_{22}\}}{\omega} \overrightarrow{v_{ds}}$$
$$\nabla I_{D}^{h} = \operatorname{Re}\{y_{21}\} \overrightarrow{v_{gs}} + \operatorname{Re}\{y_{22}\} \overrightarrow{v_{ds}}$$