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Comparing Modern CPU Design 
Techniques

Single Thread
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Throughput Computing Memory Latency
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 For a single thread:
Memory is THE bottleneck for improving performance.

Commercial server workloads exhibit poor memory locality.
Only a modest throughput speedup is possible by reducing compute time. 
Conventional single-thread processors optimized for ILP have low utilizations.

 

With many threads:
It’s possible to find something to execute every cycle. 
Significant throughput speedups are possible.
Processor utilization is much higher.

Single 
Thread
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Microprocessor Power Evolution
Power Density (W/cm2) over Time
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Niagara2's Key features

• 2nd generation CMT (Chip Multi-Threading) processor 
optimized for Space, Power, and Performance (SWaP).

• 8 Sparc Cores, 4MB shared L2 cache; Supports concurrent 
execution of 64 threads.

• >2x UltraSparc T1's throughput performance and 
performance/Watt.

• >10x improvement in Floating Point throughput performance.
• Integrates important SOC components on chip:

> Two 10G Ethernet (XAUI) ports on chip.
> Advanced Cryptographic support at wire speed.

• On-chip PCI-Express, Ethernet, and FBDIMM memory 
interfaces are SerDes based; pin BW > 1Tb/s.
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Niagara2 Block Diagram

SPC 0

C
ro

ss
ba

r

L2$ bank 0

L2$ bank 1

L2$ bank 2

L2$ bank 3

L2$ bank 4

L2$ bank 5

L2$ bank 6

L2$ bank 7

JTAG
Test Control

FBDIMM channels @ 4.8Gb/s/lane

SSI

Debug Port

SPC 2

SPC 3

SPC 4

SPC 5

SPC 6

SPC 7

FBDIMM
Controller 0

Upto 8 off-chip DIMMs/channel
Eight banks of
512 KByte L2$

Network
Interface I/O

To/From L2$
and memory

Switch

PCI-Express

Unit (XAUI)

SPC 1

2.5 Gb/s/lane3.125 Gb/s/lane
Clock Control

FBDIMM
Controller 1

FBDIMM
Controller 2

FBDIMM
Controller 3
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11

Sparc Core (SPC) Architecture Features
• Implementation of the 64-bit 

SPARC V9 instruction set.
• Each SPC has:

> Supports concurrent execution of 8 threads.
> 1 load/store, 2 Integer execution units.
> 1 Floating point and Graphics unit.
> 8-way, 16 KB I$; 32 Byte line size.
> 4-way, 8 KB D$; 16 Byte line size.
> 64-entry fully associative ITLB.
> 128-entry fully associative DTLB.
> MMU supports 8K, 64K, 4M, 256M page 

sizes; Hardware Tablewalk.
> Advanced Cryptographic unit.

• Combined BW of 8 Cryptographic 
Units is sufficient for running the 
10 Gb ethernet ports encrypted.

TLU IFU

EXU0 EXU1

FGU LSUSPU

Gasket

MMU/
HWTW

SPC Block Diagram
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SPC Architecture Features (Cont'd.)
• 8-stage Integer Pipeline (Fetch, Cache, Pick, Decode, 

Execute, Memory, Bypass, Writeback).
> 3-cycle load-use latency.

• 12-stage FP and Graphics Pipeline (Fetch, Cache, Pick, 
Decode, Execute, FX1, FX2, FX3, FX4, FX5, FB, FW).
> 6-cycle latency for dependent FP operations.
> Longer pipeline for Divide/Sqrt.

• Upto 4 instructions fetched per cycle in the 'Fetch' stage.
• Has 2 thread-groups (TGs); 'Pick' tries to find 2 instructions 

to execute every cycle – one per TG.
> Can lead to hazards (e.g. Loads picked from both TGs).

• 'Decode' stage resolves hazards that 'Pick' cannot.
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SPC Architecture Features (Cont'd.)

• Integer/Ld/
St pipeline 
shown.
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Niagara2 Die Micrograph • 8 SPARC cores, 8 
threads/core.

• 4 MB L2, 8 banks, 
16-way set 
associative.

• 16 KB I$ per Core.

• 8 KB D$ per Core.

• FP, Graphics, Crypto, 
units per Core.

• 4 dual-channel 
FBDIMM memory 
controllers @ 4.8 
Gb/s.

• X8 PCI-Express @ 
2.5 Gb/s.

• Two 10G Ethernet 
ports @ 3.125 Gb/s.
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Physical Implementation Highlights

Technology

11

3 (SVT, HVT, LVT)

Frequency 1.4 Ghz @ 1.1V
Power 84 W @ 1.1V
Die Size 342 mm^2

503 Million

Package

# of pins

65 nm CMOS (from 
Texas Instruments)

Nominal 
Voltages

1.1 V (Core), 1.5V 
(Analog)

# of Metal 
Layers
Transistor 
types

Transistor 
Count

Flip-Chip Glass 
Ceramic
1831 total; 711 
Signal I/O
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Level2 Cache
• 4-MB shared L2 Cache:

> 8 banks of 512 KB each.
> 64 B line size; 16-way set associative.
> Read 16 B per cycle per bank with 2-cycle latency.
> Address hashing capability to distribute accesses across different sets.

• SEC DED ECC/parity protected.
• Data from different ways/words interleaved to improve SER.
• Tag arrays contain reverse-mapped directory:

> Maintains L1 I$ and D$ coherency across 8 SPCs.
> Store L2 Index/Way bits instead of all the tag bits.

• Memory cell NWELL power separated out as a test hook:
> Helps identify weak memory bits susceptible to read-disturb fails due to 

PMOS NBTI effect.
> Significantly improves DPPM/reliability.



18

Level2 Cache – Row Redundancy

• Redundancy 
implemented at 32-
KB level.

• Spare rows for one 
array located in 
adjacent array.

• Adjacent array 
(which is normally 
not enabled) is 
enabled if 'incoming 
address' = 'defective 
row address'.

• Reduces X-decoder 
area by ~30 %.
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Crossbar • Provides high-BW interface 
between 8 SPCs and 8 L2 
cache banks/NCU.

• Consists of 2 blocks:
> PCX (Processor to 

Cache/NCU transfer):          
8-i/p, 9-o/p mux.

> CPX (Cache/NCU to 
Processor transfer):             
9-i/p, 8-o/p mux.

• PCX/CPX combined provide 
Rd/Wr BW of ~270 GB/s  (Pin 
BW of ~400 GB/s).

• 4-stage pipeline:           
Request, Arbitration, 
Selection, Transmission.

• 2-deep queue for each 
source-destination pair to 
hold data transfer requests.

CORE7

NCU

Bank1

CORE1

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE7CORE6

NCU Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

Bank0

CORE0

C
PX

PC
X
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             Clocking
REF 133/167/200 MHz
CMP 1.4 GHz
IO 350 MHz
IO2X 700 MHz
FSR.refclk 133/167/200 MHz
FSR.bitclk 1.6/2.0/2.4 GHz
FSR.byteclk 267/333/400 MHz
DR 267/333/400 MHz
PSR.refclk 100/125/250 MHz
PSR.bitclk 1.25 GHz
PSR.byteclk 250 MHz
PCI-Ex 250 MHz
ESR.refclk 156 MHz
ESR.bitclk 1.56 GHz
ESR.byteclk 312.5 MHz
MAC.1 312.5 MHz
MAC.2 156 MHz
MAC.3 125/25/2.5 MHz
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    Key Point:Key Point: Complex clocking; large # of clock
   domains; asynchronous domain crossings.
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Clocking (Cont'd.)

• On-chip PLL generates Ratioed Synchronous Clocks (RSCs); 
Supported fractional divide ratios: 2 to 5.25 in 0.25 increments.

• Balanced use of H-Trees and Grids for RSCs to reduce power 
and meet clock-skew budgets.

• Periodic relationship of RSCs exploited to perform high BW 
skew-tolerant domain crossings.

• Clock Tree Synthesis used for Asynchronous Clocks; domain 
crossings handled using FIFOs and meta-stability hardened 
flip-flops.

• Cluster/L1 Headers support clock gating to save clock power.
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Clocking (RSC domain crossings)
• FCLK = Fast-Clock

SCLK = Slow-Clock

• Same 'Sync_en' signal for 
FCLK -> SCLK, and    
SCLK -> FCLK crossings.

44

33

  Hold margin Setup margin

FCLK

SYNC_EN

SCLK

TX
fast

TX
fast,slow

RX
slow

k(N/M)T (k+1)(N/M)T(k+1/2)(N/M)T

44

4433

3322

k(N/M)T (k+1)(N/M)T(k+1/2)(N/M)T

FCLK

SYNC_EN

SCLK

TX
slow

TX
slow,fast

RX
fast

  Hold marginSetup margin

BB CC DD

AA BB CC

AA BB

RX
slow

TX
slow

SYNC_EN

FCLK SCLK

TX
fast,slow

EN

TX
fast

FCLK SCLK

TX
slow,fast

EN

RX
fast

Key Point:Key Point: Equalizing setup and hold
 margins maximizes skew tolerance.
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Niagara2's SerDes Interfaces

• All SerDes share a common micro-architecture.
• Level-shifters enable extensive circuit reuse across the three 

SerDes designs.
• Total raw pin BW in excess of 1Tb/s.
• Choice of FBDIMM (vs DDR2) memory architecture provides 

~2x the memory BW at <0.5x the pin count.

FBDIMM PCI-Express Ethernet-XAUI

VSS VDD VDD

Link-rate (Gb/s) 4.8 2.5 3.125

14 * 8 8 4 * 2

10 * 8 8 4 * 2

Bandwidth (Gb/s) 921.6 40 50

Signalling 
Reference

# of North-bound 
(Rx) lanes
# of South-bound 
(Tx) lanes
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Niagara2's True Random Number Generator

• Consists of 3 entropy cells.

• Amplified n-well resistor thermal noise modulates VCO frequency; VCO o/p 
sampled by on-chip clock.

• LFSR accumulates entropy over a pre-set accumulation time.
> Privileged software programs a timer with desired entropy accumulation time.
> Timer blocks loads from LFSR before entropy accumulation time has elapsed.
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Niagara2's System on Chip Methodology
• Chip comprised of  many 

subsystems with different design 
styles and methodologies:
> Custom Memories & Analog 

Macros:
> Full custom design and verification.

 40% compiled memories.
> Schematic/manual layout based.

> External IP:
> SerDes full custom IP Macros.

> Complex Clusters:
> DP/Control/Memory Macro.
> Higher speed designs.

> ASIC designs:
> PCI-Express and NIC functions.

> CPU:
> Integration of component abstracts.
> Custom pre-routes and autoroute 

solution.
> Propriety RC analysis and buffer 

insertion methodology.

Key Point:Key Point: Chip Design Methodologies
 had to comprehend blocks with different

         design styles and levels of abstraction.



27

Complex Design Flow

• Architectural pipeline reflected closely in the 
floorplanning of: 

> Memory Macros.
> Control Regions.
> Datapath Regions.

• Early Design Phase: 
> Fully integrated SUN toolset allows fast turnaround.
> Less accurate, but fast - allows quick iterations to 

identify timing fixes involving RTL/floorplan changes.
> Allows reaching route stability.

• Stable Design Phase:
> More accurate, but not as fast, allows timing fixes 

involving logic and physical changes; Allows logic to 
freeze.

• Final Design Phase:
> More accurate, but longer time to complete; More 

focus on physical closure then logic.
• Freeze and ECO Design Phases:

> Allows preserving large portion of design from one 
iteration to next.

  Key Point:Key Point: Design Flow different
  for different design phases.
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Design For Manufacturability (DFM)
• Single poly orientation (except I/O blocks).
• Larger-than-minimum design rules:

> To minimize impact of poly/diffusion flaring.
> Near stress-prone topologies to reduce chances of dislocations in Si-lattice.
> Larger Metal overlap of via/contact where possible.

• Improved gate-CD control:
> Dummy polys used for gate shielding.
> Limited gate-poly pitches used; OPC algorithm tuned for them.

• OPC simulations of critical cell layouts to ensure sufficient 
manufacturing process margin.

• Extensive use of statistical simulations:
> Reduces unnecessary design margin that could result from designing to FAB-

supplied corner models that often are non-physical.

• Redundant vias placed without area increase.
• All custom ckts proven on testchips prior to 1st Si.
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Power
• CMT approach used to 

optimize the design for 
performance/watt.

• Clock gating used at 
cluster and local clock-
header level.

• 'GATE-BIAS' cells used to 
reduce leakage.
> ~10 % increase in channel 

length gives ~40 % leakage 
reduction.

• Interconnect W/S 
combinations optimized for 
power-delay product to 
reduce interconnect 
power.

Niagara2 Worst Case Power =
84 W @ 1.1V, 1.4 GHz
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Power management

• Software can turn threads on/off.

• 'Power Throttling' mode controls 
instruction issue rates to manage 
power consumption. 

• On-chip thermal diodes monitor 
die temperature.
> Helps ensure reliable operation in 

case of cooling system failure.

• Memory Controllers enable 
DRAM power-down modes and/or 
control DRAM access rates to 
control memory power.
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Design for Testability
• Deterministic Test Mode (DTM) used to test core by 

eliminating uncertainty of asynchronous domain crossings.
• Dedicated 'Debug Port' observes on-chip signals.
• 32 scan chains cover >99 % flops; enable ATPG/Scan testing.
• All RAM/CAM arrays testable using MBIST and Macrotest.

> Direct Memory Observe (DMO) using Macrotest enables fast bit-
mapping required for array repair.

• Path Delay/Transition Test technique enables speed testing of 
targeted critical paths.

• SerDes designs incorporate loopback capabilities for testing.
• Architecture design enables use of <8 SPCs/L2 banks.

> Shortened debug cycle by making partially functional die usable.
> Will increase overall yield by enabling partial-core products.
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Mission Mode vs DTM
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Conclusions

• Sun's 2nd generation 8-core, 64-thread, CMT 
SPARC processor optimized for Space, 
Power, and Performance (SWaP) integrates 
all major system functions on chip.

• Doubles the throughput and throughput/watt 
compared to UltraSparcT1.

• Provides an order of magnitude improvement 
in floating point throughput compared to 
UltraSparcT1.

• Enables secure applications with advanced 
cryptographic support at wire speed.

• Enables new generation of power-efficient, 
fully-secure datacenters. 
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